Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Front Immunol ; 14: 1244071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662946

RESUMEN

During Trypanosoma cruzi infection, macrophages phagocytose parasites and remove apoptotic cells through efferocytosis. While macrophage 1 (M1) produces proinflammatory cytokines and NO and fights infection, M2 macrophages are permissive host cells that express arginase 1 and play a role in tissue repair. The regulation of M1 and M2 phenotypes might either induce or impair macrophage-mediated immunity towards parasite control or persistence in chronic Chagas disease. Here, we highlight a key role of macrophage activation in early immune responses to T. cruzi that prevent escalating parasitemia, heart parasitism, and mortality during acute infection. We will discuss the mechanisms of macrophage activation and deactivation, such as T cell cytokines and efferocytosis, and how to improve macrophage-mediated immunity to prevent parasite persistence, inflammation, and the development of chagasic cardiomyopathy. Potential vaccines or therapy must enhance early T cell-macrophage crosstalk and parasite control to restrain the pathogenic outcomes of parasite-induced inflammation in the heart.


Asunto(s)
Enfermedad de Chagas , Macrófagos , Humanos , Citocinas , Inflamación , Apoptosis
2.
Commun Biol ; 5(1): 1421, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581764

RESUMEN

Adaptive immunity controls Trypanosoma cruzi infection, but the protozoan parasite persists and causes Chagas disease. T cells undergo apoptosis, and the efferocytosis of apoptotic cells might suppress macrophages and exacerbate parasite infection. Nonetheless, the receptors involved in the efferocytosis of apoptotic lymphocytes during infection remain unknow. Macrophages phagocytose apoptotic cells by using the TAM (Tyro3, Axl, Mer) family of receptors. To address how the efferocytosis of apoptotic cells affects macrophage-mediated immunity, we employ here Axl receptor- and Mer receptor-deficient mouse strains. In bone marrow-derived macrophages (BMDMs), both Axl and Mer receptors play a role in the efferocytosis of proapoptotic T cells from T. cruzi-infected mice. Moreover, treatment with a TAM receptor inhibitor blocks efferocytosis and upregulates M1 hallmarks induced by immune T cells from infected mice. Remarkably, the use of Axl-/- but not Mer-/- macrophages increases T-cell-induced M1 responses, such as nitric oxide production and control of parasite infection. Furthermore, infected Axl-/- mice show reduced peak parasitemia, defective efferocytosis, improved M1 responses, and ameliorated cardiac inflammation and fibrosis. Therefore, Axl induces efferocytosis, disrupts M1 responses, and promotes parasite infection and pathology in experimental Chagas disease. Axl stands as a potential host-direct target for switching macrophage phenotypes in infectious diseases.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Enfermedad de Chagas , Macrófagos , Miocardio , Animales , Ratones , Proteínas Portadoras , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/patología , Fagocitosis , Ratones Noqueados , Tirosina Quinasa del Receptor Axl/genética , Corazón/parasitología , Miocardio/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda