Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Am Chem Soc ; 141(6): 2661-2677, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30715874

RESUMEN

The asymmetric transfer hydrogenation (ATH) of ketones/imines with Noyori-Ikariya catalyst represents an important reaction in both academia and fine chemical industry. The method allows for the preparation of chiral secondary alcohols/amines with very good to excellent optical purities. Remarkably, the same chiral Noyori-Ikariya complex is also a precatalyst for a wide range of other chemo- and stereoselective reductive and oxidative transformations. Among them are enantioselective sulfonamidation of acrylates (intramolecular aza-Michael reaction) and carboxylation of indoles with CO2. Development of these catalytic reactions has been inspired by the realized cleavage of the N-H bond of sulfonamides and indoles by the 16e- amido derivative of the 18e- precatalyst via metal-ligand cooperation (MLC). This paper summarizes our efforts to investigate N-H bond cleavage of gaseous ammonia in solution via MLC and reports the serendipitous discovery of a new class of chiral tridentate κ3[ N, N', N″] Ru and Ir metallacycles, derivatives of the famous M-FsDPEN catalysts (M = Ru, Ir). The protonation of these metallacycles by strong acids containing weakly coordinating (chiral) anions generates ionic complexes, which were identified as conceptually novel Noyori-Ikariya precatalysts. For example, the ATH of aromatic ketones with some of these complexes proceeds with up to 99% ee.

2.
J Org Chem ; 83(19): 12239-12246, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30183292

RESUMEN

A synthesis of chiral homoallylic nitriles by the iridium-catalyzed allylation of cyanoacetates followed by Krapcho demethoxycarbonylation has been developed. A wide range of homoallylic nitriles were obtained with a high enantioselectivity (>95-99% ee). These compounds are useful chiral building blocks because further synthetic elaboration starting from a nitrile or terminal alkene is possible.

3.
J Org Chem ; 83(4): 1852-1860, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29308650

RESUMEN

A convenient synthesis of multisubstituted azatriphenylenes is reported. [Ir(cod)Cl]2/diphosphine is an efficient catalyst for the [2 + 2 + 2] cycloaddition of biaryl-linked diynes with nitriles to give multisubstituted azatriphenylenes in high yields. Aromatic, heteroaromatic, aliphatic, and functionalized nitriles could be used for the reaction.

4.
Chemistry ; 21(39): 13513-7, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26277707

RESUMEN

By switching the catalytic function from transfer hydrogenation based on the metal/NH bifunctionality, facile dehydrogenation of formic acid was achieved by amido- and hydrido(amine)-Ir complexes derived from N-triflyl-1,2-diphenylethylenediamine (TfDPEN) at ambient temperature even in the absence of base additives. Further acceleration was observed by the addition of water, leading to a maximum turnover frequency above 6000 h(-1). A proton-relay mechanism guided by the protic amine ligand and water is postulated for effective protonation of metal hydrides.

5.
Chem Commun (Camb) ; 57(45): 5534-5537, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-33960337

RESUMEN

A bifunctional tethered iridium catalyst containing a 1,2-diphenylethylenediamine framework was synthesised for the first time. The ethereal tether chain was easily constructed via the intramolecular oxydefluorination of a perfluorophenylsulfonyl substituent by using a modified 1,2,3,4,5-pentamethylcyclopentadienyl ligand with a hydroxyalkyl chain. The conformationally constrained structure could hamper deactivation pathways in the catalytic hydrogen generation from formic acid, leading to advanced durability and complete conversion.

6.
Org Lett ; 20(17): 5213-5218, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30102047

RESUMEN

A concise synthesis of new oxy-tethered ruthenium complexes effective for the asymmetric transfer hydrogenation of aromatic ketones is described. The oxy-tether was constructed via a defluorinative etherification arising from an intramolecular nucleophilic substitution of a perfluorinated phenylsulfonyl substituent. The obtained tethered complexes exhibited desirable catalytic activity and selectivity, especially in the asymmetric transfer hydrogenation of functionalized aromatic ketones. The robustness and rigidity of the tether contribute to their superior catalytic performance relative to the nontethered prototype complex.

7.
Chem Asian J ; 13(1): 73-80, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29140603

RESUMEN

NNN and NCN pincer-type ruthenium(II) complexes featuring two protic pyrazol-3-yl arms with a trifluoromethyl (CF3 ) group at the 5-position were synthesized and structurally characterized to evaluate the impact of the substitution on the properties and catalysis. The increased Brønsted acidity by the highly electron-withdrawing CF3 pendants was demonstrated by protonation-deprotonation experiments. By contrast, the IR spectra of the carbonyl derivatives as well as the cyclic voltammogram indicated that the electron density of the ruthenium atom is negligibly influenced by the CF3 group. Catalysis of these complexes in the decomposition of formic acid to dihydrogen and carbon dioxide was also examined. The NNN pincer-type complex 1 a with the CF3 group exhibited a higher catalytic activity than the tBu-substituted analogue 1 b. In addition, the bis(CF3 -pyrazolato) ammine derivative 4 catalyzed the reaction even in the absence of base additives.


Asunto(s)
Formiatos/química , Hidrógeno/química , Compuestos Organometálicos/química , Pirazoles/química , Rutenio/química , Catálisis , Estructura Molecular , Compuestos Organometálicos/síntesis química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda