Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cell Biol ; 19(7): 4561-71, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10373505

RESUMEN

The Std1 protein modulates the expression of glucose-regulated genes, but its exact molecular role in this process is unclear. A two-hybrid screen for Std1-interacting proteins identified the hydrophilic C-terminal domains of the glucose sensors, Snf3 and Rgt2. The homologue of Std1, Mth1, behaves differently from Std1 in this assay by interacting with Snf3 but not Rgt2. Genetic interactions between STD1, MTH1, SNF3, and RGT2 suggest that the glucose signaling is mediated, at least in part, through interactions of the products of these four genes. Mutations in MTH1 can suppress the raffinose growth defect of a snf3 mutant as well as the glucose fermentation defect present in cells lacking both glucose sensors (snf3 rgt2). Genetic suppression by mutations in MTH1 is likely to be due to the increased and unregulated expression of hexose transporter genes. In media lacking glucose or with low levels of glucose, the hexose transporter genes are subject to repression by a mechanism that requires the Std1 and Mth1 proteins. An additional mechanism for glucose sensing must exist since a strain lacking all four genes (snf3 rgt2 std1 mth1) is still able to regulate SUC2 gene expression in response to changes in glucose concentration. Finally, studies with green fluorescent protein fusions indicate that Std1 is localized to the cell periphery and the cell nucleus, supporting the idea that it may transduce signals from the plasma membrane to the nucleus.


Asunto(s)
Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales , Clonación Molecular , Proteínas Fúngicas/genética , Regulación Enzimológica de la Expresión Génica , Proteínas Facilitadoras del Transporte de la Glucosa , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Proteínas Fluorescentes Verdes , Péptidos y Proteínas de Señalización Intracelular , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de Transporte de Monosacáridos/genética , Mutagénesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Fructofuranosidasa
2.
Genetics ; 150(1): 31-42, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9725828

RESUMEN

The calcium-dependent protein phosphatase calcineurin plays an essential role in ion homeostasis in yeast. In this study, we identify a parallel ion stress response pathway that is independent of the calcineurin signaling pathway. Cells with null alleles in both STD1 and its homologue, MTH1, manifest numerous phenotypes observed in calcineurin mutants, including sodium, lithium, manganese, and hydroxyl ion sensitivity, as well as alpha factor toxicity. Furthermore, increased gene dosage of STD1 suppresses the ion stress phenotypes in calcineurin mutants and confers halotolerance in wild-type cells. However, Std1p functions in a calcineurin-independent ion stress response pathway, since a std1 mth1 mutant is FK506 sensitive under conditions of ion stress. Mutations in other genes known to regulate gene expression in response to changes in glucose concentration, including SNF3, RGT2, and SNF5, also affect cell growth under ion stress conditions. Gene expression studies indicate that the regulation of HAL1 and PMR2 expression is affected by STD1 gene dosage. Taken together, our data demonstrate that response to ion stress requires the participation of both calcineurin-dependent and -independent pathways.


Asunto(s)
Calcineurina/metabolismo , Estrés Oxidativo , Saccharomyces cerevisiae/metabolismo , Sodio/metabolismo , Adaptación Fisiológica/genética , Secuencia de Bases , Cartilla de ADN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dosificación de Gen , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Homeostasis , Mutación , Fenotipo , Saccharomyces cerevisiae/fisiología , Transducción de Señal
3.
EMBO J ; 19(18): 4936-43, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10990457

RESUMEN

The Snf1 kinase and its mammalian homolog, the AMP-activated protein kinase, are heterotrimeric enzymes composed of a catalytic alpha-subunit, a regulatory gamma-subunit and a beta-subunit that mediates heterotrimer formation. Saccharomyces cerevisiae encodes three beta-subunit genes, SIP1, SIP2 and GAL83. Earlier studies suggested that these subunits may not be required for Snf1 kinase function. We show here that complete and precise deletion of all three beta-subunit genes inactivates the Snf1 kinase. The sip1Delta sip2Delta gal83Delta strain is unable to derepress invertase, grows poorly on alternative carbon sources and fails to direct the phosphorylation of the Mig1 and Sip4 proteins in vivo. The SIP1 sip2Delta gal83Delta strain manifests a subset of Snf phenotypes (Raf(+), Gly(-)) observed in the snf1Delta 10 strain (Raf(-), Gly(-)), suggesting that individual beta-subunits direct the Snf1 kinase to a subset of its targets in vivo. Indeed, deletion of individual beta-subunit genes causes distinct differences in the induction and phosphorylation of Sip4, strongly suggesting that the beta-subunits play an important role in substrate definition.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Quinasas Activadas por AMP , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Western Blotting , División Celular/genética , Proteínas de Unión al ADN/metabolismo , Epítopos/química , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Glucosa/farmacología , Glicósido Hidrolasas/metabolismo , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Fenotipo , Fosforilación , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/enzimología , Transactivadores/metabolismo , beta-Fructofuranosidasa
4.
J Biol Chem ; 276(39): 36460-6, 2001 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-11486005

RESUMEN

The yeast Snf1 kinase and its metazoan orthologues, the AMP-activated protein kinases, are activated in response to nutrient limitation. Activation requires the phosphorylation of a conserved threonine residue in the activation loop of the catalytic subunit. A phosphopeptide antibody was generated that specifically recognizes Snf1 protein that is phosphorylated in its activation loop on threonine 210. Using this reagent, we show that phosphorylation of threonine 210 correlates with Snf1 activity, since it is detected in cells subjected to glucose limitation but not in cells grown in abundant glucose. A Snf1 mutant completely lacking kinase activity was phosphorylated normally on threonine 210 in glucose-starved cells, eliminating the possibility that the threonine 210 modification is due to an autophosphorylation event. Cells lacking the Reg1 protein, a regulatory subunit for the Glc7 phosphatase, showed constitutive phosphorylation of Snf1 threonine 210. Exposure of cells to high concentrations of sodium chloride also induced phosphorylation of Snf1. Interestingly, Mig1, a downstream target of Snf1 kinase, is phosphorylated in glucose-stressed but not sodium-stressed cells. Finally, cells lacking the gamma subunit of the Snf1 kinase complex encoded by the SNF4 gene exhibited normal regulation of threonine 210 phosphorylation in response to glucose limitation but are unable to phosphorylate Mig1 efficiently. Our data indicate that activation of the Snf1 kinase complex involves two steps, one that requires a distinct upstream kinase and one that is mediated by the gamma subunit of the kinase itself.


Asunto(s)
Proteínas Portadoras , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Treonina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP , Alelos , Western Blotting , Dominio Catalítico , Activación Enzimática , Epítopos/metabolismo , Proteínas Fúngicas/metabolismo , Genotipo , Glucosa/metabolismo , Iones , Modelos Biológicos , Mutación , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Fosfotreonina/metabolismo , Mutación Puntual , Pruebas de Precipitina , Unión Proteica , Proteína Fosfatasa 1 , Saccharomyces cerevisiae/enzimología , Transducción de Señal , Sodio/farmacología , Cloruro de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda