RESUMEN
More than 60 zoonoses are linked to small mammals, including some of the most devastating pathogens in human history. Millions of museum-archived tissues are available to understand natural history of those pathogens. Our goal was to maximize the value of museum collections for pathogen-based research by using targeted sequence capture. We generated a probe panel that includes 39,916 80-bp RNA probes targeting 32 pathogen groups, including bacteria, helminths, fungi, and protozoans. Laboratory-generated, mock-control samples showed that we are capable of enriching targeted loci from pathogen DNA 2,882â6,746-fold. We identified bacterial species in museum-archived samples, including Bartonella, a known human zoonosis. These results showed that probe-based enrichment of pathogens is a highly customizable and efficient method for identifying pathogens from museum-archived tissues.
Asunto(s)
ADN , Zoonosis , Animales , Humanos , ADN/genética , Zoonosis/microbiología , Hongos , Bacterias/genética , MamíferosRESUMEN
Four species of spotted skunks (Carnivora, Mephitidae, Spilogale) are currently recognized: Spilogale angustifrons, S. gracilis, S. putorius, and S. pygmaea. Understanding species boundaries within this group is critical for effective conservation given that regional populations or subspecies (e.g., S. p. interrupta) have experienced significant population declines. Further, there may be currently unrecognized diversity within this genus as some taxa (e.g., S. angustifrons) and geographic regions (e.g., Central America) never have been assessed using DNA sequence data. We analyzed species limits and diversification patterns in spotted skunks using multilocus nuclear (ultraconserved elements) and mitochondrial (whole mitogenomes and single gene analysis) data sets from broad geographic sampling representing all currently recognized species and subspecies. We found a high degree of genetic divergence among Spilogale that reflects seven distinct species and eight unique mitochondrial lineages. Initial divergence between S. pygmaea and all other Spilogale occurred in the Early Pliocene (~ 5.0 million years ago). Subsequent diversification of the remaining Spilogale into an "eastern" and a "western" lineage occurred during the Early Pleistocene (~1.5 million years ago). These two lineages experienced temporally coincident patterns of diversification at ~0.66 and ~0.35 million years ago into two and ultimately three distinct evolutionary units, respectively. Diversification was confined almost entirely within the Pleistocene during a timeframe characterized by alternating glacial-interglacial cycles, with the origin of this diversity occurring in northeastern Mexico and the southwestern United States of America. Mitochondrial-nuclear discordance was recovered across three lineages in geographic regions consistent with secondary contact, including a distinct mitochondrial lineage confined to the Sonoran Desert. Our results have direct consequences for conservation of threatened populations, or species, as well as for our understanding of the evolution of delayed implantation in this enigmatic group of small carnivores.
Asunto(s)
Carnívoros , Mephitidae , Animales , Carnívoros/genética , Cambio Climático , ADN Mitocondrial/genética , Variación Genética , Mephitidae/genética , México , Filogenia , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: The Indonesian island of Sulawesi has a complex geological history. It is composed of several landmasses that have arrived at a near modern configuration only in the past few million years. It is the largest island in the biodiversity hotspot of Wallacea-an area demarcated by the biogeographic breaks between Wallace's and Lydekker's lines. The mammal fauna of Sulawesi is transitional between Asian and Australian faunas. Sulawesi's three genera of squirrels, all endemic (subfamily Nannosciurinae: Hyosciurus, Rubrisciurus and Prosciurillus), are of Asian origin and have evolved a variety of phenotypes that allow a range of ecological niche specializations. Here we present a molecular phylogeny of this radiation using data from museum specimens. High throughput sequencing technology was used to generate whole mitochondrial genomes and a panel of nuclear ultraconserved elements providing a large genome-wide dataset for inferring phylogenetic relationships. RESULTS: Our analysis confirmed monophyly of the Sulawesi taxa with deep divergences between the three endemic genera, which predate the amalgamation of the current island of Sulawesi. This suggests lineages may have evolved in allopatry after crossing Wallace's line. Nuclear and mitochondrial analyses were largely congruent and well supported, except for the placement of Prosciurillus murinus. Mitochondrial analysis revealed paraphyly for Prosciurillus, with P. murinus between or outside of Hyosciurus and Rubrisciurus, separate from other species of Prosciurillus. A deep but monophyletic history for the four included species of Prosciurillus was recovered with the nuclear data. CONCLUSIONS: The divergence of the Sulawesi squirrels from their closest relatives dated to ~9.7-12.5 million years ago (MYA), pushing back the age estimate of this ancient adaptive radiation prior to the formation of the current conformation of Sulawesi. Generic level diversification took place around 9.7 MYA, opening the possibility that the genera represent allopatric lineages that evolved in isolation in an ancient proto-Sulawesian archipelago. We propose that incongruence between phylogenies based on nuclear and mitochondrial sequences may have resulted from biogeographic discordance, when two allopatric lineages come into secondary contact, with complete replacement of the mitochondria in one species.
Asunto(s)
Sciuridae/clasificación , Sciuridae/genética , Animales , Biodiversidad , Evolución Biológica , Secuencia Conservada , Genoma Mitocondrial , Indonesia , Mitocondrias/genética , Museos , Filogenia , Análisis de Secuencia de ADNRESUMEN
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.
Asunto(s)
Evolución Molecular , Genética de Población , Gerbillinae/genética , África Austral , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Distribución Animal , Animales , Cambio Climático , ADN Mitocondrial/genética , Femenino , Geografía , Gerbillinae/clasificación , Haplotipos , Masculino , Modelos Teóricos , Datos de Secuencia Molecular , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Análisis EspacialRESUMEN
Many species of large wildlife have declined drastically worldwide. These reductions often lead to profound shifts in the ecology of entire communities and ecosystems. However, the effects of these large-wildlife declines on other taxa likely hinge upon both underlying abiotic properties of these systems and on the types of secondary anthropogenic changes associated with wildlife loss, making impacts difficult to predict. To better understand how these important contextual factors determine the consequences of large-wildlife declines on other animals in a community, we examined the effects of three common forms of large-wildlife loss (removal without replacement [using fences], removal followed by replacement with domestic stock, and removal accompanied by crop agricultural use) on small-mammal abundance, diversity, and community composition, in landscapes that varied in several abiotic attributes (rainfall, soil fertility, land-use intensity) in central Kenya. We found that small-mammal communities were indeed heavily impacted by all forms of large-wildlife decline, showing, on average: (1) higher densities, (2) lower species richness per site, and (3) different species assemblages in sites from which large wildlife were removed. However, the nature and magnitude of these effects were strongly context dependent. Rainfall, type of land-use change, and the interaction of these two factors were key predictors of both the magnitude and type of responses of small mammals. The strongest effects, particularly abundance responses, tended to be observed in low-rainfall areas. Whereas isolated wildlife removal primarily led to increased small-mammal abundance, wildlife removal associated with secondary uses (agriculture, domestic stock) had much more variable effects on abundance and stronger impacts on diversity and composition. Collectively, these results (1) highlight the importance of context in determining the impacts of large-wildlife decline on small-mammal communities, (2) emphasize the challenges in extrapolating results from controlled experimental studies to predict the effects of wildlife declines that are accompanied by secondary land-uses, and (3) suggest that, because of the context-dependent nature of the responses to large-wildlife decline, large-wildlife status alone cannot be reliably used to predict small-mammal community changes.
Asunto(s)
Animales Salvajes , Biodiversidad , Tamaño Corporal , Animales , Conservación de los Recursos Naturales , Kenia , Dinámica PoblacionalRESUMEN
Metagenomic methods provide an experimental approach to inform the relationships between hosts and their microbial inhabitants. Previous studies have provided the conceptual realization that microbiomes are dynamic among hosts and the intimacy of relation between micro- and macroorganisms. Here, we present an intestinal microflora community analysis for members of the order Chiroptera and investigate the relative influence of variables in shaping observed microbiome relationships. The variables ranged from those considered to have ancient and long-term influences (host phylogeny and life history) to the relatively transient variable of host reproductive condition. In addition, collection locality data, representing the geographic variable, were included in analyses. Results indicate a complex influence of variables in shaping sample relationships in which signal for host phylogeny is recovered at broad taxonomic levels (family), whereas intrafamilial analyses disclosed various degrees of resolution for the remaining variables. Although cumulative probabilities of assignment indicated both reproductive condition and geography influenced relationships, comparison of ecological measures among groups revealed statistical differences between most variable classifications. For example, ranked ecological diversity was associated with host phylogeny (deeper coalescences among families were associated with more microfloral diversity), dietary strategy (herbivory generally retained higher diversity than carnivory) and reproductive condition (reproductively active females displayed more diverse microflora than nonreproductive conditions). Overall, the results of this study describe a complex process shaping microflora communities of wildlife species as well as provide avenues for future research that will further inform the nature of symbiosis between microflora communities and hosts.
Asunto(s)
Quirópteros/microbiología , Quirópteros/fisiología , Metagenoma/genética , Filogenia , Animales , Carnivoría , Femenino , Guatemala , Herbivoria , MasculinoRESUMEN
We analyzed phylogeographic patterns in the western spotted skunk, Spilogale gracilis Merriam, 1890 (Carnivora: Mephitidae) in relation to historical events associated with Pre-Pleistocene Divergence (PPD) and Quaternary climate change (QCC) using mitochondrial DNA from 97 individuals distributed across Western North America. Divergence times were generated using BEAST to estimate when isolation in putative refugia occurred. Patterns and timing of demographic expansion was performed using Bayesian skyline plot. Putative climatic refugia resulting from Quaternary climate change were identified using paleoecological niche modeling and divergence dates compared to major vicariant events associated with Pre-Pleistocene conditions. We recovered three major mitochondrial clades corresponding to western North America (California, Baja, and across the Great Basin), east-central North America (Texas, central Mexico, New Mexico), and southwestern Arizona/northwestern Mexico. Time to most recent common ancestor for S. gracilis occurred ~1.36 Ma. Divergence times for each major clade occurred between 0.25 and 0.12 Ma, with signature of population expansion occurring 0.15 and 0.10 Ma. Ecological niche models identified three potential climatic refugia during the Last Interglacial, (1) west coast of California and Oregon, (2) northwestern Mexico, and (3) southern Texas/northeastern Mexico as well as two refugia during the Last Glacial Maximum, (1) western USA and (2) southern Texas/northeastern Mexico. This study supports PPD in shaping species-level diversity compared to QCC-driven changes at the intraspecific level for Spilogale, similar to the patterns reported for other small mammals (e.g., rodents and bats). Phylogeographic patterns also appear to have been shaped by both habitat and river vicariance, especially across the desert southwest. Further, continuing climate change during the Holocene coupled with anthropogenic modifications during the Anthropocene appears to be removing both of these barriers to current dispersal of western spotted skunks.
RESUMEN
The taxonomy of American deer has been established almost entirely on the basis of morphological data and without the use of explicit phylogenetic methods; hence, phylogenetic analyses including data for all of the currently recognized species, even if based on a single gene, might improve current understanding of their taxonomy. We tested the monophyly of the morphology-defined genera and species of New World deer (Odocoileini) with phylogenetic analyses of mitochondrial DNA sequences. This is the first such test conducted using extensive geographic and taxonomic sampling. Our results do not support the monophyly of Mazama, Odocoileus, Pudu, M. americana, M. nemorivaga, Od. hemionus, and Od. virginianus. Mazama contains species that belong to other genera. We found a novel sister-taxon relationship between "Mazama" pandora and a clade formed by Od. hemionus columbianus and Od. h. sitkensis, and transfer pandora to Odocoileus. The clade formed by Od. h. columbianus and Od. h. sitkensis may represent a valid species, whereas the remaining subspecies of Od. hemionus appear closer to Od. virginianus. Pudu (Pudu) puda was not found sister to Pudu (Pudella) mephistophiles. If confirmed, this result will prompt the recognition of the monotypic Pudella as a distinct genus. We provide evidence for the existence of an undescribed species now confused with Mazama americana, and identify other instances of cryptic, taxonomically unrecognized species-level diversity among populations here regarded as Mazama temama, "Mazama" nemorivaga, and Hippocamelus antisensis. Noteworthy records that substantially extend the known distributions of M. temama and "M." gouazoubira are provided, and we unveil a surprising ambiguity regarding the distribution of "M." nemorivaga, as it is described in the literature. The study of deer of the tribe Odocoileini has been hampered by the paucity of information regarding voucher specimens and the provenance of sequences deposited in GenBank. We pinpoint priorities for future systematic research on the tribe Odocoileini.
RESUMEN
Here, we present a set of RNA-based probes for whole mitochondrial genome in-solution enrichment, targeting a diversity of mammalian mitogenomes. This probes set was designed from seven mammalian orders and tested to determine the utility for enriching degraded DNA. We generated 63 mitogenomes representing five orders and 22 genera of mammals that yielded varying coverage ranging from 0 to >5400X. Based on a threshold of 70% mitogenome recovery and at least 10× average coverage, 32 individuals or 51% of samples were considered successful. The estimated sequence divergence of samples from the probe sequences used to construct the array ranged up to nearly 20%. Sample type was more predictive of mitogenome recovery than sample age. The proportion of reads from each individual in multiplexed enrichments was highly skewed, with each pool having one sample that yielded a majority of the reads. Recovery across each mitochondrial gene varied with most samples exhibiting regions with gaps or ambiguous sites. We estimated the ability of the probes to capture mitogenomes from a diversity of mammalian taxa not included here by performing a clustering analysis of published sequences for 100 taxa representing most mammalian orders. Our study demonstrates that a general array can be cost and time effective when there is a need to screen a modest number of individuals from a variety of taxa. We also address the practical concerns for using such a tool, with regard to pooling samples, generating high quality mitogenomes and detail a pipeline to remove chimeric molecules.
Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Mamíferos/genética , Hibridación de Ácido Nucleico/métodos , Sondas de Oligonucleótidos/genética , Animales , Análisis por Conglomerados , ADN Mitocondrial/química , Análisis de Secuencia de ADNRESUMEN
Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating.
Asunto(s)
Fósiles , Filogenia , Roedores/clasificación , Roedores/genética , Animales , Evolución Molecular , Ratones , Paleontología , RatasRESUMEN
We use a combination of cytochrome b sequence data and karyological evidence to confirm the presence of Mus indutus and Mus minutoides in Botswana. Our data include sampling from five localities from across the country, including one site in northwestern Botswana where both species were captured in syntopy. Additionally, we find evidence for two mitochondrial lineages of M. minutoides in northwestern Botswana that differ by 5% in sequence variation. Also, we report that M. minutoides in Botswana have the 2n=34 karyotype with the presence of a (X.1) sex-autosome translocation.