Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Langmuir ; 30(38): 11474-84, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25222029

RESUMEN

We have used steady-state and time-resolved neutron reflectometry to study the diffusion of fullerene derivatives into the narrow optical gap polymer poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) to explore the sequential processing of the donor and acceptor for the preparation of efficient organic solar cells. It was found that when [6,6]-phenyl-C61-butyric-acid-methyl-ester (60-PCBM) was deposited onto a thin film of PCDTBT from dichloromethane (DCM), a three-layer structure was formed that was stable below the glass-transition temperature of the polymer. When good solvents for the polymer were used in conjunction with DCM, both 60-PCBM and [6,6]-phenyl-C71-butyric-acid-methyl-ester (70-PCBM) were seen to form films that had a thick fullerene layer containing little polymer and a PCDTBT-rich layer near the interface with the substrate. Devices composed of films prepared by sequential deposition of the polymer and fullerene had efficiencies of up to 5.3%, with those based on 60-PCBM close to optimized bulk heterojunction (BHJ) cells processed in the conventional manner. Sequential deposition of pure components to form the active layer is attractive for large-area device fabrication, and the results demonstrate that this processing method can give efficient solar cells.

2.
ACS Appl Mater Interfaces ; 13(26): 30910-30920, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34170676

RESUMEN

Efficient organic light-emitting diodes (OLEDs) consist of an emissive layer comprising a blend of a light-emitting and host material in contact with one or more charge transporting layers. The distribution of the active material in the guest-host emissive layer blend and the changes that may occur upon thermal annealing are two important factors in determining the stability and efficiency of OLEDs. We have combined neutron reflectometry and photoluminescence measurements to investigate the structures of films comprising an emissive layer containing a phosphorescent poly(dendrimer) material blended with 4,4'-N,N'-di(carbazolyl)biphenyl. This combination has been shown to give rise to highly efficient OLEDs. Here, we show that the emissive poly(dendrimer) material was not uniformly distributed in the host, but formed a concentration gradient within the emissive layer. Upon heating, the adjacent electron transport layer was found to intermix with the emissive layer, accompanied by changes in the material distribution in the emissive layer. The intermixing of the materials led to a decrease in the photoluminescence from the poly(dendrimer) within the film. The decrease in the photoluminescence was ascribed to an increase in interchromophore interactions that could arise from a conformational change of the poly(dendrimer) or phase separation leading to aggregation. The results indicate that, while uniform mixing of the guest and host is not essential for efficiency, the thermal stabilities of both host and charge transport materials are important for device durability.

3.
ACS Appl Mater Interfaces ; 10(4): 3848-3855, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29356504

RESUMEN

Organic light-emitting devices containing solution-processed emissive dendrimers can be highly efficient. The most efficient devices contain a blend of the light-emitting dendrimer in a host and one or more charge-transporting layers. Using neutron reflectometry measurements with in situ photoluminescence, we have investigated the structure of the as-formed film as well as the changes in film structure and dendrimer emission under thermal stress. It was found that the as-formed film stacks comprising poly(3,4-ethylenedioxythiophene):polystyrene sulfonate/host:dendrimer/1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (where the host was deuterated 4,4'-N,N'-di(carbazolyl)biphenyl or tris(4-carbazol-9-ylphenyl)amine, the host:dendrimer layer was solution-processed, and the 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene evaporated) had well-defined interfaces, indicating good wetting of each of the layers by the subsequently deposited layer. Upon thermal annealing, there was no change in the poly(3,4-ethylenedioxythiophene):polystyrene sulfonate/host:dendrimer interface, but once the temperature reached above the Tg of the host:dendrimer layer, it became a supercooled liquid into which 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene dissolved. When the film stacks were held at a temperature just above the onset of the diffusion process, they underwent an initial relatively fast diffusion process before reaching a quasi-stable state at that temperature.

4.
ACS Appl Mater Interfaces ; 9(16): 14153-14161, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28406284

RESUMEN

Organic light-emitting diodes (OLEDs) are subject to thermal stress from Joule heating and the external environment. In this work, neutron reflectometry (NR) was used to probe the effect of heat on the morphology of thin three-layer organic films comprising materials typically found in OLEDs. It was found that layers within the films began to mix when heated to approximately 20 °C above the glass-transition temperature (Tg) of the material with the lowest Tg. Diffusion occurred when the material with the lowest Tg formed a supercooled liquid, with the rates of interdiffusion of the materials depending on the relative Tg's. If the supercooled liquid formed at a temperature significantly lower than the Tg of the higher-Tg material in the adjacent layer, then pseudo-Fickian diffusion occurred. If the two Tg's were similar, then the two materials can interdiffuse at similar rates. The type and extent of diffusion observed can provide insight into and a partial explanation for the "burn in" often observed for OLEDs. Photoluminescence measurements performed simultaneously with the NR measurements showed that interdiffusion of the materials from the different layers had a strong effect on the emission of the film, with quenching generally observed. These results emphasize the importance of using thermally stable materials in OLED devices to avoid film morphology changes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda