RESUMEN
The Drosophila adult external sensory organ, comprising a neuron and its support cells, is derived from a single precursor cell via several asymmetric cell divisions. To identify molecules involved in sensory organ development, we conducted a tissue-specific gain-of-function screen. We screened 2293 independent P-element lines established by P. Rorth and identified 105 lines, carrying insertions at 78 distinct loci, that produced misexpression phenotypes with changes in number, fate, or morphology of cells of the adult external sensory organ. On the basis of the gain-of-function phenotypes of both internal and external support cells, we subdivided the candidate lines into three classes. The first class (52 lines, 40 loci) exhibits partial or complete loss of adult external sensory organs. The second class (38 lines, 28 loci) is associated with increased numbers of entire adult external sensory organs or subsets of sensory organ cells. The third class (15 lines, 10 loci) results in potential cell fate transformations. Genetic and molecular characterization of these candidate lines reveals that some loci identified in this screen correspond to genes known to function in the formation of the peripheral nervous system, such as big brain, extra macrochaetae, and numb. Also emerging from the screen are a large group of previously uncharacterized genes and several known genes that have not yet been implicated in the development of the peripheral nervous system.
Asunto(s)
Drosophila/crecimiento & desarrollo , Mecanorreceptores/crecimiento & desarrollo , Animales , Linaje de la Célula , Drosophila/genética , FenotipoRESUMEN
BACKGROUND: Previous studies in our laboratory indicate that alcohol consumption suppresses the metastasis of B16BL6 melanoma, whereas the cytolytic activity of natural killer (NK) cells is decreased in female C57BL/6 mice given 20% w/v alcohol in their drinking water. In the present study, we further evaluated the involvement of NK cells and alcohol consumption in the cytolytic activity of NK cells, the surface expression of NK phenotypic markers, and metastasis of B16BL6 melanoma in C57BL/6 beige (bgJ/bgJ) mutant mice, which possess inherently low NK-cell cytolytic activity. METHODS: Beige and control (bgJ/+) mice were given either water or 20% w/v of alcohol in drinking water for 6 1/2 to 7 weeks before assay for cytolytic activity, surface marker expression, and inoculation with B16BL6 melanoma intravenously or into the pinna of the ear. RESULTS: NK cytolytic activity was suppressed in beige mice, and alcohol consumption did not modulate further the cytolytic activity. Beige mice had a lower percentage of NK cells in the peripheral blood and spleen than control mice. Peripheral blood lymphocytes from beige mice also exhibited a reduced percentage of CD4+ T lymphocytes. Alcohol consumption similarly reduced the percentages of NK1.1- and LGL-1-expressing lymphocytes in the peripheral blood and spleen and reduced the percentage of CD8+ T lymphocytes in the peripheral blood in both control and beige mice. Tumor lung colonization was increased in beige mice relative to control mice after intravenous inoculation of B16BL6 melanoma. The increase was more pronounced in water-drinking beige mice than in control mice irrespective of alcohol consumption. Tumor lung colonization was significantly decreased (p < 0.05) by alcohol consumption in one experiment and partially decreased (p = 0.07) in the other. Mice that were inoculated into the pinna of the ear also exhibited a blunted antimetastatic response to alcohol consumption. CONCLUSIONS: These data suggest that the presence of the beige mutation diminishes the antimetastatic effect of alcohol consumption and that there is no interaction between alcohol consumption and NK-cell activity in the modulation of lung metastasis of B16BL6 melanoma cells.
Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Células Asesinas Naturales/metabolismo , Neoplasias Pulmonares/secundario , Melanoma Experimental/secundario , Consumo de Bebidas Alcohólicas/genética , Animales , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Femenino , Células Asesinas Naturales/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación/genéticaRESUMEN
X-linked spinal and bulbar muscular atrophy (SBMA) is caused by a CAG repeat expansion in the first exon of the androgen receptor (AR) gene. Disease-associated alleles (37-66 CAGs) change in length when transmitted from parents to offspring, with a significantly greater tendency to shift size when inherited paternally. As transgenic mice carrying human AR cDNAs with 45 and 66 CAG repeats do not display repeat instability, we attempted to model trinucleotide repeat instability by generating transgenic mice with yeast artificial chromosomes (YACs) carrying AR CAG repeat expansions in their genomic context. Studies of independent lines of AR YAC transgenic mice with CAG 45 alleles reveal intergenerational instability at an overall rate of approximately 10%. We also find that the 45 CAG repeat tracts are significantly more unstable with maternal transmission and as the transmitting mother ages. Of all the CAG/CTG repeat transgenic mice produced to date the AR YAC CAG 45 mice are unstable with the smallest trinucleotide repeat mutations, suggesting that the length threshold for repeat instability in the mouse may be lowered by including the appropriate flanking human DNA sequences. By sequence-tagged site content analysis and long range mapping we determined that one unstable transgenic line has integrated an approximately 70 kb segment of the AR locus due to fragmentation of the AR YAC. Identification of the cis -acting elements that permit CAG tract instability and the trans -acting factors that modulate repeat instability in the AR YAC CAG 45 mice may provide insights into the molecular basis of trinucleotide repeat instability in humans.