Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Mol Biol Evol ; 39(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35642310

RESUMEN

It is largely unknown how mammalian genomes evolve under rapid speciation and environmental adaptation. An excellent model for understanding fast evolution is provided by the genus Sus, which diverged relatively recently and lacks postzygotic isolation. Here, we present a high-quality reference genome of the Visayan warty pig, which is specialized to a tropical island environment. Comparing the genome sequences and chromatin contact maps of the Visayan warty pig (Sus cebifrons) and domestic pig (Sus scrofa), we characterized the dynamics of chromosomal structure evolution during Sus speciation, revealing the similar chromosome conformation as the potential biological mechanism of frequent postdivergence hybridization among Suidae. We further investigated the different signatures of adaptive selection and domestication in Visayan warty pig and domestic pig with specific emphasize on the evolution of olfactory and gustatory genes, elucidating higher olfactory diversity in Visayan warty pig and positive and relaxed evolution of bitter and fat taste receptors, respectively, in domestic pig. Our comprehensive evolutionary and comparative genome analyses provide insight into the dynamics of genomes and how these change over relative short evolutionary times, as well as how these genomic differences encode for differences in the phenotypes.


Asunto(s)
Cromosomas , Genoma , Animales , Genómica , Sus scrofa/genética , Porcinos/genética
2.
Heredity (Edinb) ; 130(3): 135-144, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639700

RESUMEN

European wildlife has been subjected to intensifying levels of anthropogenic impact throughout the Holocene, yet the main genetic partitioning of many species is thought to still reflect the late-Pleistocene glacial refugia. We analyzed 26,342 nuclear SNPs of 464 wild boar (Sus scrofa) across the European continent to infer demographic history and reassess the genetic consequences of natural and anthropogenic forces. We found that population fragmentation, inbreeding and recent hybridization with domestic pigs have caused the spatial genetic structure to be heterogeneous at the local scale. Underlying local anthropogenic signatures, we found a deep genetic structure in the form of an arch-shaped cline extending from the Dinaric Alps, via Southeastern Europe and the Baltic states, to Western Europe and, finally, to the genetically diverged Iberian peninsula. These findings indicate that, despite considerable anthropogenic influence, the deeper, natural continental structure is still intact. Regarding the glacial refugia, our findings show a weaker signal than generally assumed, but are nevertheless suggestive of two main recolonization routes, with important roles for Southern France and the Balkans. Our results highlight the importance of applying genomic resources and framing genetic results within a species' demographic history and geographic distribution for a better understanding of the complex mixture of underlying processes.


Asunto(s)
Variación Genética , Genoma , Animales , Porcinos , Europa (Continente) , Demografía , Sus scrofa/genética , Filogenia , ADN Mitocondrial/genética
3.
PLoS Genet ; 16(9): e1009027, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32966296

RESUMEN

The availability of genomes for many species has advanced our understanding of the non-protein-coding fraction of the genome. Comparative genomics has proven itself to be an invaluable approach for the systematic, genome-wide identification of conserved non-protein-coding elements (CNEs). However, for many non-mammalian model species, including chicken, our capability to interpret the functional importance of variants overlapping CNEs has been limited by current genomic annotations, which rely on a single information type (e.g. conservation). We here studied CNEs in chicken using a combination of population genomics and comparative genomics. To investigate the functional importance of variants found in CNEs we develop a ch(icken) Combined Annotation-Dependent Depletion (chCADD) model, a variant effect prediction tool first introduced for humans and later on for mouse and pig. We show that 73 Mb of the chicken genome has been conserved across more than 280 million years of vertebrate evolution. The vast majority of the conserved elements are in non-protein-coding regions, which display SNP densities and allele frequency distributions characteristic of genomic regions constrained by purifying selection. By annotating SNPs with the chCADD score we are able to pinpoint specific subregions of the CNEs to be of higher functional importance, as supported by SNPs found in these subregions are associated with known disease genes in humans, mice, and rats. Taken together, our findings indicate that CNEs harbor variants of functional significance that should be object of further investigation along with protein-coding mutations. We therefore anticipate chCADD to be of great use to the scientific community and breeding companies in future functional studies in chicken.


Asunto(s)
Pollos/genética , ADN Intergénico/genética , Genómica/métodos , Alelos , Animales , Secuencia Conservada/genética , ADN Intergénico/metabolismo , Evolución Molecular , Frecuencia de los Genes/genética , Variación Genética/genética , Genoma/genética , Intrones/genética , Metagenómica/métodos , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia/métodos
4.
Mol Biol Evol ; 38(6): 2627-2638, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33620468

RESUMEN

The evolutionary origin of complex organs challenges empirical study because most organs evolved hundreds of millions of years ago. The placenta of live-bearing fish in the family Poeciliidae represents a unique opportunity to study the evolutionary origin of complex organs, because in this family a placenta evolved at least nine times independently. It is currently unknown whether this repeated evolution is accompanied by similar, repeated, genomic changes in placental species. Here, we compare whole genomes of 26 poeciliid species representing six out of nine independent origins of placentation. Evolutionary rate analysis revealed that the evolution of the placenta coincides with convergent shifts in the evolutionary rate of 78 protein-coding genes, mainly observed in transporter- and vesicle-located genes. Furthermore, differences in sequence conservation showed that placental evolution coincided with similar changes in 76 noncoding regulatory elements, occurring primarily around genes that regulate development. The unexpected high occurrence of GATA simple repeats in the regulatory elements suggests an important function for GATA repeats in developmental gene regulation. The distinction in molecular evolution observed, with protein-coding parallel changes more often found in metabolic and structural pathways, compared with regulatory change more frequently found in developmental pathways, offers a compelling model for complex trait evolution in general: changing the regulation of otherwise highly conserved developmental genes may allow for the evolution of complex traits.


Asunto(s)
Evolución Biológica , Genoma , Placenta , Poecilia/genética , Viviparidad de Animales no Mamíferos/genética , Sustitución de Aminoácidos , Animales , Femenino , Embarazo , Selección Genética
5.
PLoS Genet ; 15(3): e1008055, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30875370

RESUMEN

Lethal recessive alleles cause pre- or postnatal death in homozygous affected individuals, reducing fertility. Especially in small size domestic and wild populations, those alleles might be exposed by inbreeding, caused by matings between related parents that inherited the same recessive lethal allele from a common ancestor. In this study we report five relatively common (up to 13.4% carrier frequency) recessive lethal haplotypes in two commercial pig populations. The lethal haplotypes have a large effect on carrier-by-carrier matings, decreasing litter sizes by 15.1 to 21.6%. The causal mutations are of different type including two splice-site variants (affecting POLR1B and TADA2A genes), one frameshift (URB1), and one missense (PNKP) variant, resulting in a complete loss-of-function of these essential genes. The recessive lethal alleles affect up to 2.9% of the litters within a single population and are responsible for the death of 0.52% of the total population of embryos. Moreover, we provide compelling evidence that the identified embryonic lethal alleles contribute to the observed heterosis effect for fertility (i.e. larger litters in crossbred offspring). Together, this work marks specific recessive lethal variation describing its functional consequences at the molecular, phenotypic, and population level, providing a unique model to better understand fertility and heterosis in livestock.


Asunto(s)
Genes Letales , Mutación con Pérdida de Función , Sus scrofa/embriología , Sus scrofa/genética , Secuencia de Aminoácidos , Animales , Femenino , Fertilidad/genética , Genes Recesivos , Flujo Genético , Genética de Población , Haplotipos , Vigor Híbrido/genética , Hibridación Genética/genética , Tamaño de la Camada/genética , Masculino , Embarazo , ARN Polimerasa I/genética , Análisis de Secuencia de ARN , Secuenciación Completa del Genoma
6.
Genomics ; 113(4): 2229-2239, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022350

RESUMEN

The genotype-phenotype link is a major research topic in the life sciences but remains highly complex to disentangle. Part of the complexity arises from the number of genes contributing to the observed phenotype. Despite the vast increase of molecular data, pinpointing the causal variant underlying a phenotype of interest is still challenging. In this study, we present an approach to map causal variation and molecular pathways underlying important phenotypes in pigs. We prioritize variation by utilizing and integrating predicted variant impact scores (pCADD), functional genomic information, and associated phenotypes in other mammalian species. We demonstrate the efficacy of our approach by reporting known and novel causal variants, of which many affect non-coding sequences. Our approach allows the disentangling of the biology behind important phenotypes by accelerating the discovery of novel causal variants and molecular mechanisms affecting important phenotypes in pigs. This information on molecular mechanisms could be applicable in other mammalian species, including humans.


Asunto(s)
Variación Genética , Genómica , Animales , Genotipo , Mamíferos , Fenotipo , Porcinos/genética
7.
BMC Genomics ; 22(1): 426, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107887

RESUMEN

BACKGROUND: Tilapia is one of the most abundant species in aquaculture. Hypoxia is known to depress growth rate, but the genetic mechanism by which this occurs is unknown. In this study, two groups consisting of 3140 fish that were raised in either aerated (normoxia) or non-aerated pond (nocturnal hypoxia). During grow out, fish were sampled five times to determine individual body weight (BW) gains. We applied a genome-wide association study to identify SNPs and genes associated with the hypoxic and normoxic environments in the 16th generation of a Genetically Improved Farmed Tilapia population. RESULTS: In the hypoxic environment, 36 SNPs associated with at least one of the five body weight measurements (BW1 till BW5), of which six, located between 19.48 Mb and 21.04 Mb on Linkage group (LG) 8, were significant for body weight in the early growth stage (BW1 to BW2). Further significant associations were found for BW in the later growth stage (BW3 to BW5), located on LG1 and LG8. Analysis of genes within the candidate genomic region suggested that MAPK and VEGF signalling were significantly involved in the later growth stage under the hypoxic environment. Well-known hypoxia-regulated genes such as igf1rb, rora, efna3 and aurk were also associated with growth in the later stage in the hypoxic environment. Conversely, 13 linkage groups containing 29 unique significant and suggestive SNPs were found across the whole growth period under the normoxic environment. A meta-analysis showed that 33 SNPs were significantly associated with BW across the two environments, indicating a shared effect independent of hypoxic or normoxic environment. Functional pathways were involved in nervous system development and organ growth in the early stage, and oocyte maturation in the later stage. CONCLUSIONS: There are clear genotype-growth associations in both normoxic and hypoxic environments, although genome architecture involved changed over the growing period, indicating a transition in metabolism along the way. The involvement of pathways important in hypoxia especially at the later growth stage indicates a genotype-by-environment interaction, in which MAPK and VEGF signalling are important components.


Asunto(s)
Cíclidos , Estudio de Asociación del Genoma Completo , Animales , Cíclidos/genética , Ligamiento Genético , Genotipo , Oxígeno
8.
Mol Biol Evol ; 37(5): 1376-1386, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31960923

RESUMEN

The evolution of a placenta is predicted to be accompanied by rapid evolution of genes involved in processes that regulate mother-offspring interactions during pregnancy, such as placenta formation, embryonic development, and nutrient transfer to offspring. However, these predictions have only been tested in mammalian species, where only a single instance of placenta evolution has occurred. In this light, the genus Poeciliopsis is a particularly interesting model for placenta evolution, because in this genus a placenta has evolved independently from the mammalian placenta. Here, we present and compare genome assemblies of two species of the livebearing fish genus Poeciliopsis (family Poeciliidae) that differ in their reproductive strategy: Poeciliopsis retropinna which has a well-developed complex placenta and P. turrubarensis which lacks a placenta. We applied different assembly strategies for each species: PacBio sequencing for P. retropinna (622-Mb assembly, scaffold N50 of 21.6 Mb) and 10× Genomics Chromium technology for P. turrubarensis (597-Mb assembly, scaffold N50 of 4.2 Mb). Using the high contiguity of these genome assemblies and near-completeness of gene annotations to our advantage, we searched for gene duplications and performed a genome-wide scan for genes evolving under positive selection. We find rapid evolution in major parts of several molecular pathways involved in parent-offspring interaction in P. retropinna, both in the form of gene duplications as well as positive selection. We conclude that the evolution of the placenta in the genus Poeciliopsis is accompanied by rapid evolution of genes involved in similar genomic pathways as found in mammals.


Asunto(s)
Ciprinodontiformes/genética , Genoma , Rasgos de la Historia de Vida , Selección Genética , Viviparidad de Animales no Mamíferos/genética , Animales , Femenino , Duplicación de Gen , Masculino , Placenta , Embarazo
9.
Mol Biol Evol ; 37(9): 2465-2476, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32344429

RESUMEN

Understanding the genetic basis of similar phenotypes shared between lineages is a long-lasting research interest. Even though animal evolution offers many examples of parallelism, for many phenotypes little is known about the underlying genes and mutations. We here use a combination of whole-genome sequencing, expression analyses, and comparative genomics to study the parallel genetic origin of ptilopody (Pti) in chicken. Ptilopody (or foot feathering) is a polygenic trait that can be observed in domesticated and wild avian species and is characterized by the partial or complete development of feathers on the ankle and feet. In domesticated birds, ptilopody is easily selected to fixation, though extensive variation in the type and level of feather development is often observed. By means of a genome-wide association analysis, we identified two genomic regions associated with ptilopody. At one of the loci, we identified a 17-kb deletion affecting PITX1 expression, a gene known to encode a transcription regulator of hindlimb identity and development. Similarly to pigeon, at the second loci, we observed ectopic expression of TBX5, a gene involved in forelimb identity and a key determinant of foot feather development. We also observed that the trait evolved only once as foot-feathered birds share the same haplotype upstream TBX5. Our findings indicate that in chicken and pigeon ptilopody is determined by the same set of genes that affect similar molecular pathways. Our study confirms that ptilopody has evolved through parallel evolution in chicken and pigeon.


Asunto(s)
Evolución Biológica , Pollos/genética , Plumas/crecimiento & desarrollo , Factores de Transcripción Paired Box/genética , Proteínas de Dominio T Box/genética , Animales , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Columbidae/genética , Pie , Haplotipos , Herencia Multifactorial , Factores de Transcripción Paired Box/metabolismo , Proteínas de Dominio T Box/metabolismo , Secuenciación Completa del Genoma
10.
PLoS Genet ; 14(9): e1007661, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30231021

RESUMEN

Livestock populations can be used to study recessive defects caused by deleterious alleles. The frequency of deleterious alleles including recessive lethal alleles can stay at high or moderate frequency within a population, especially if recessive lethal alleles exhibit an advantage for favourable traits in heterozygotes. In this study, we report such a recessive lethal deletion of 212kb (del) within the BBS9 gene in a breeding population of pigs. The deletion produces a truncated BBS9 protein expected to cause a complete loss-of-function, and we find a reduction of approximately 20% on the total number of piglets born from carrier by carrier matings. Homozygous del/del animals die mid- to late-gestation, as observed from high increase in numbers of mummified piglets resulting from carrier-by-carrier crosses. The moderate 10.8% carrier frequency (5.4% allele frequency) in this pig population suggests an advantage on a favourable trait in heterozygotes. Indeed, heterozygous carriers exhibit increased growth rate, an important selection trait in pig breeding. Increased growth and appetite together with a lower birth weight for carriers of the BBS9 null allele in pigs is analogous to the phenotype described in human and mouse for (naturally occurring) BBS9 null-mutants. We show that fetal death, however, is induced by reduced expression of the downstream BMPER gene, an essential gene for normal foetal development. In conclusion, this study describes a lethal 212kb deletion with pleiotropic effects on two different genes, one resulting in fetal death in homozygous state (BMPER), and the other increasing growth (BBS9) in heterozygous state. We provide strong evidence for balancing selection resulting in an unexpected high frequency of a lethal allele in the population. This study shows that the large amounts of genomic and phenotypic data routinely generated in modern commercial breeding programs deliver a powerful tool to monitor and control lethal alleles much more efficiently.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Frecuencia de los Genes , Genes Letales/fisiología , Endogamia , Sus scrofa/genética , Animales , Conjuntos de Datos como Asunto , Femenino , Fertilidad/genética , Genes Recesivos/fisiología , Técnicas de Genotipaje , Heterocigoto , Homocigoto , Masculino , Modelos Animales , Sus scrofa/crecimiento & desarrollo
11.
Mol Ecol ; 29(6): 1103-1119, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32080922

RESUMEN

Invasive alien species are a significant threat to both economic and ecological systems. Identifying the processes that give rise to invasive populations is essential for implementing effective control strategies. We conducted an ancestry analysis of invasive feral swine (Sus scrofa, Linnaeus, 1758), a highly destructive ungulate that is widely distributed throughout the contiguous United States, to describe introduction pathways, sources of newly emergent populations and processes contributing to an ongoing invasion. Comparisons of high-density single nucleotide polymorphism genotypes for 6,566 invasive feral swine to a comprehensive reference set of S. scrofa revealed that the vast majority of feral swine were of mixed ancestry, with dominant genetic associations to Western heritage breeds of domestic pig and European populations of wild boar. Further, the rapid expansion of invasive feral swine over the past 30 years was attributable to secondary introductions from established populations of admixed ancestry as opposed to direct introductions of domestic breeds or wild boar. Spatially widespread genetic associations of invasive feral swine to European wild boar deviated strongly from historical S. scrofa introduction pressure, which was largely restricted to domestic pigs with infrequent, localized wild boar releases. The deviation between historical introduction pressure and contemporary genetic ancestry suggests wild boar-hybridization may contribute to differential fitness in the environment and heightened invasive potential for individuals of admixed domestic pig-wild boar ancestry.


Asunto(s)
Animales Salvajes/genética , Hibridación Genética , Sus scrofa/genética , Animales , Genética de Población , Genotipo , Especies Introducidas , Polimorfismo de Nucleótido Simple , Estados Unidos
12.
Genet Sel Evol ; 52(1): 4, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32033531

RESUMEN

BACKGROUND: In animal breeding, identification of causative genetic variants is of major importance and high economical value. Usually, the number of candidate variants exceeds the number of variants that can be validated. One way of prioritizing probable candidates is by evaluating their potential to have a deleterious effect, e.g. by predicting their consequence. Due to experimental difficulties to evaluate variants that do not cause an amino-acid substitution, other prioritization methods are needed. For human genomes, the prediction of deleterious genomic variants has taken a step forward with the introduction of the combined annotation dependent depletion (CADD) method. In theory, this approach can be applied to any species. Here, we present pCADD (p for pig), a model to score single nucleotide variants (SNVs) in pig genomes. RESULTS: To evaluate whether pCADD captures sites with biological meaning, we used transcripts from miRNAs and introns, sequences from genes that are specific for a particular tissue, and the different sites of codons, to test how well pCADD scores differentiate between functional and non-functional elements. Furthermore, we conducted an assessment of examples of non-coding and coding SNVs, which are causal for changes in phenotypes. Our results show that pCADD scores discriminate between functional and non-functional sequences and prioritize functional SNVs, and that pCADD is able to score the different positions in a codon relative to their redundancy. Taken together, these results indicate that based on pCADD scores, regions with biological relevance can be identified and distinguished according to their rate of adaptation. CONCLUSIONS: We present the ability of pCADD to prioritize SNVs in the pig genome with respect to their putative deleteriousness, in accordance to the biological significance of the region in which they are located. We created scores for all possible SNVs, coding and non-coding, for all autosomes and the X chromosome of the pig reference sequence Sscrofa11.1, proposing a toolbox to prioritize variants and evaluate sequences to highlight new sites of interest to explain biological functions that are relevant to animal breeding.


Asunto(s)
Genómica/métodos , Polimorfismo de Nucleótido Simple , Porcinos/genética , Animales , Femenino , Variación Genética , Genoma , Masculino , MicroARNs , Modelos Genéticos , Cromosoma X/genética
14.
BMC Evol Biol ; 19(1): 156, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31349784

RESUMEN

BACKGROUND: The evolution of complex organs is thought to occur via a stepwise process, each subsequent step increasing the organ's complexity by a tiny amount. This evolutionary process can be studied by comparing closely related species that vary in the presence or absence of their organs. This is the case for the placenta in the live-bearing fish family Poeciliidae, as members of this family vary markedly in their ability to supply nutrients to their offspring via a placenta. Here, we investigate the genomic basis underlying this phenotypic variation in Heterandria formosa, a poeciliid fish with a highly complex placenta. We compare this genome to three published reference genomes of non-placental poeciliid fish to gain insight in which genes may have played a role in the evolution of the placenta in the Poeciliidae. RESULTS: We sequenced the genome of H. formosa, providing the first whole genome sequence for a placental poeciliid. We looked for signatures of adaptive evolution by comparing its gene sequences to those of three non-placental live-bearing relatives. Using comparative evolutionary analyses, we found 17 genes that were positively selected exclusively in H. formosa, as well as five gene duplications exclusive to H. formosa. Eight of the genes evolving under positive selection in H. formosa have a placental function in mammals, most notably endometrial tissue remodelling or endometrial cell proliferation. CONCLUSIONS: Our results show that a substantial portion of positively selected genes have a function that correlates well with the morphological changes that form the placenta of H. formosa, compared to the corresponding tissue in non-placental poeciliids. These functions are mainly endometrial tissue remodelling and endometrial cell proliferation. Therefore, we hypothesize that natural selection acting on genes involved in these functions plays a key role in the evolution of the placenta in H. formosa.


Asunto(s)
Evolución Biológica , Secuencia Conservada , Ciprinodontiformes/genética , Genoma , Placenta/fisiología , Animales , Femenino , Duplicación de Gen , Embarazo , Selección Genética , Secuenciación Completa del Genoma
15.
Genet Sel Evol ; 51(1): 60, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664893

RESUMEN

BACKGROUND: The pig breeding industry has undergone a large number of mergers in the past decades. Various commercial lines were merged or discontinued, which is expected to reduce the genetic diversity of the pig species. The objective of the current study was to investigate the genetic diversity of different former Dutch Landrace breeding lines and quantify their relationship with the current Dutch Landrace breed that originated from these lines. RESULTS: Principal component analysis clearly divided the former Landrace lines into two main clusters, which are represented by Norwegian/Finnish Landrace lines and Dutch Landrace lines. Structure analysis revealed that each of the lines that are present in the Dutch Gene bank has a unique genetic identity. The current Dutch Landrace breed shows a high level of admixture and is closely related to the six former lines. The Dumeco N-line, which is conserved in the Dutch Gene bank, is poorly represented in the current Dutch Landrace. All seven lines (the six former and the current line) contribute almost equally to the genetic diversity of the Dutch Landrace breed. As expected, the current Dutch Landrace breed comprises only a small proportion of unique genetic diversity that was not present in the other lines. The genetic diversity level, as measured by Eding's core set method, was equal to 0.89 for the current Dutch Landrace breed, whereas total genetic diversity across the seven lines, measured by the same method, was equal to 0.99. CONCLUSIONS: The current Dutch Landrace breed shows a high level of admixture and is closely related to the six former Dutch Landrace lines. Merging of commercial Landrace lines has reduced the genetic diversity of the Landrace population in the Netherlands, although a large proportion of the original variation is maintained. Thus, our recommendation is to conserve breeding lines in a gene bank before they are merged.


Asunto(s)
Cruzamiento/métodos , Polimorfismo Genético , Carne de Cerdo/normas , Porcinos/genética , Animales , Carne de Cerdo/economía , Carácter Cuantitativo Heredable
16.
Genome Res ; 25(7): 970-81, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26063737

RESUMEN

Conservation and breeding programs aim at maintaining the most diversity, thereby avoiding deleterious effects of inbreeding while maintaining enough variation from which traits of interest can be selected. Theoretically, the most diversity is maintained using optimal contributions based on many markers to calculate coancestries, but this can decrease fitness by maintaining linked deleterious variants. The heterogeneous patterns of coancestry displayed in pigs make them an excellent model to test these predictions. We propose methods to measure coancestry and fitness from resequencing data and use them in population management. We analyzed the resequencing data of Sus cebifrons, a highly endangered porcine species from the Philippines, and genotype data from the Pietrain domestic breed. By analyzing the demographic history of Sus cebifrons, we inferred two past bottlenecks that resulted in some inbreeding load. In Pietrain, we analyzed signatures of selection possibly associated with commercial traits. We also simulated the management of each population to assess the performance of different optimal contribution methods to maintain diversity, fitness, and selection signatures. Maximum genetic diversity was maintained using marker-by-marker coancestry, and least using genealogical coancestry. Using a measure of coancestry based on shared segments of the genome achieved the best results in terms of diversity and fitness. However, this segment-based management eliminated signatures of selection. We demonstrate that maintaining both diversity and fitness depends on the genomic distribution of deleterious variants, which is shaped by demographic and selection histories. Our findings show the importance of genomic and next-generation sequencing information in the optimal design of breeding or conservation programs.


Asunto(s)
Especies en Peligro de Extinción , Aptitud Genética , Variación Genética , Genoma , Genómica , Sus scrofa/genética , Animales , Genética de Población , Genómica/métodos , Selección Genética , Porcinos
17.
Heredity (Edinb) ; 121(6): 564-578, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29588508

RESUMEN

Traditional Dutch chicken breeds are marginalised breeds of ornamental and cultural-historical importance. In the last decades, miniaturising of existing breeds (so called neo-bantam) has become popular and resulted in alternatives to original large breeds. However, while backcrossing is increasing the neo-bantams homozygosity, genetic exchange between breeders may increase their genetic diversity. We use the 60 K SNP array to characterise the genetic diversity, demographic history, and level of inbreeding of Dutch heritage breeds, and particularly of neo-bantams. Commercial white layers are used to contrast the impact of management strategy on genetic diversity and demography. A high proportion of alleles was found to be shared between large fowls and neo-bantams, suggesting gene flow during neo-bantams development. Population admixture analysis supports these findings, in addition to revealing introgression from neo-bantams of the same breed and of phenotypically similar breeds. The prevalence of long runs of homozygosity (ROH) confirms the importance of recent inbreeding. A high diversity in management, carried out in small breeding units explains the high heterogeneity in diversity and ROH profile displayed by traditional breeds compared to commercial lines. Population bottlenecks may explain the long ROHs in large fowls, while repetitive backcrossing for phenotype selection may account for them in neo-bantams. Our results highlight the importance of using markers to inform breeding programmes on potentially harmful homozygosity to prevent loss of genetic diversity. We conclude that bantamisation has generated unique and identifiable genetic diversity. However, this diversity can only be preserved in the near future through structured breeding programmes.


Asunto(s)
Cruzamiento , Pollos/genética , Variación Genética , Animales , Homocigoto
18.
Genet Sel Evol ; 50(1): 18, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661133

RESUMEN

BACKGROUND: Genome editing technologies provide new tools for genetic improvement and have the potential to become the next game changer in animal and plant breeding. The aim of this study was to investigate how genome editing in combination with genomic selection can accelerate the introduction of a monogenic trait in a livestock population as compared to genomic selection alone. METHODS: A breeding population was simulated under genomic selection for a polygenic trait. After reaching Bulmer equilibrium, the selection objective was to increase the allele frequency of a monogenic trait, with or without genome editing, in addition to improving the polygenic trait. Scenarios were compared for time to fixation of the desired allele, selection response for the polygenic trait, and level of inbreeding. The costs, in terms of number of editing procedures, were compared to the benefits of having more animals with the desired phenotype of the monogenic trait. Effects of reduced editing efficiency were investigated. RESULTS: In a population of 20,000 selection candidates per generation, the total number of edited zygotes needed to reach fixation of the desired allele was 22,118, 7072, or 3912 with, no, moderate, or high selection emphasis on the monogenic trait, respectively. Genome editing resulted in up to four-fold faster fixation of the desired allele when efficiency was 100%, while the loss in long-term selection response for the polygenic trait was up to seven-fold less compared to genomic selection alone. With moderate selection emphasis on the monogenic trait, introduction of genome editing led to a four-fold reduction in the total number of animals showing the undesired phenotype before fixation. However, with a currently realistic editing efficiency of 4%, the number of required editing procedures increased by 72% and loss in selection response increased eight-fold compared to 100% efficiency. With low efficiency, loss in selection response was 29% more compared to genomic selection alone. CONCLUSIONS: Genome editing strongly decreased the time to fixation for a desired allele compared to genomic selection alone. Reduced editing efficiency had a major impact on the number of editing procedures and on the loss in selection response. In addition to ethical and welfare considerations of genome editing, a careful assessment of its technical costs and benefits is required.


Asunto(s)
Edición Génica/veterinaria , Ganado/genética , Sitios de Carácter Cuantitativo , Selección Genética , Animales , Cruzamiento , Bovinos , Femenino , Frecuencia de los Genes , Endogamia , Masculino
19.
Genet Sel Evol ; 50(1): 7, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29566646

RESUMEN

BACKGROUND: Sex-linked slow (SF) and fast (FF) feathering rates at hatch have been widely used in poultry breeding for autosexing at hatch. In chicken, the sex-linked K (SF) and k+ (FF) alleles are responsible for the feathering rate phenotype. Allele K is dominant and a partial duplication of the prolactin receptor gene has been identified as the causal mutation. Interestingly, some domesticated turkey lines exhibit similar slow- and fast-feathering phenotypes, but the underlying genetic components and causal mutation have never been investigated. In this study, our aim was to investigate the molecular basis of feathering rate at hatch in domestic turkey. RESULTS: We performed a sequence-based case-control association study and detected a genomic region on chromosome Z, which is statistically associated with rate of feathering at hatch in turkey. We identified a 5-bp frameshift deletion in the prolactin receptor (PRLR) gene that is responsible for slow feathering at hatch. All female cases (SF turkeys) were hemizygous for this deletion, while 188 controls (FF turkeys) were hemizygous or homozygous for the reference allele. This frameshift mutation introduces a premature stop codon and six novel amino acids (AA), which results in a truncated PRLR protein that lacks 98 C-terminal AA. CONCLUSIONS: We present the causal mutation for feathering rate in turkey that causes a partial C-terminal loss of the prolactin receptor, and this truncated PRLR protein is strikingly similar to the protein encoded by the slow feathering K allele in chicken.


Asunto(s)
Pollos/genética , Mutación del Sistema de Lectura , Receptores de Prolactina/genética , Análisis de Secuencia de ADN/veterinaria , Pavos/genética , Alelos , Secuencia de Aminoácidos , Animales , Pollos/metabolismo , Duplicación Cromosómica , Plumas , Femenino , Estudios de Asociación Genética/veterinaria , Hemicigoto , Masculino , Fenotipo , Receptores de Prolactina/metabolismo , Pavos/metabolismo
20.
Genet Sel Evol ; 50(1): 17, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661130

RESUMEN

BACKGROUND: Deleterious genetic variation can increase in frequency as a result of mutations, genetic drift, and genetic hitchhiking. Although individual effects are often small, the cumulative effect of deleterious genetic variation can impact population fitness substantially. In this study, we examined the genome of commercial purebred chicken lines for deleterious and functional variations, combining genotype and whole-genome sequence data. RESULTS: We analysed over 22,000 animals that were genotyped on a 60 K SNP chip from four purebred lines (two white egg and two brown egg layer lines) and two crossbred lines. We identified 79 haplotypes that showed a significant deficit in homozygous carriers. This deficit was assumed to stem from haplotypes that potentially harbour lethal recessive variations. To identify potentially deleterious mutations, a catalogue of over 10 million variants was derived from 250 whole-genome sequenced animals from three purebred white-egg layer lines. Out of 4219 putative deleterious variants, 152 mutations were identified that likely induce embryonic lethality in the homozygous state. Inferred deleterious variation showed evidence of purifying selection and deleterious alleles were generally overrepresented in regions of low recombination. Finally, we found evidence that mutations, which were inferred to be evolutionally intolerant, likely have positive effects in commercial chicken populations. CONCLUSIONS: We present a comprehensive genomic perspective on deleterious and functional genetic variation in egg layer breeding lines, which are under intensive selection and characterized by a small effective population size. We show that deleterious variation is subject to purifying selection and that there is a positive relationship between recombination rate and purging efficiency. In addition, multiple putative functional coding variants were discovered in selective sweep regions, which are likely under positive selection. Together, this study provides a unique molecular perspective on functional and deleterious variation in commercial egg-laying chickens, which can enhance current genomic breeding practices to lower the frequency of undesirable variants in the population.


Asunto(s)
Pollos/genética , Polimorfismo de Nucleótido Simple , Eliminación de Secuencia , Secuenciación Completa del Genoma/veterinaria , Animales , Animales Domésticos , Cruzamiento , Variación Genética , Genotipo , Haplotipos , Recombinación Genética , Selección Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda