Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280374

RESUMEN

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Asunto(s)
Complemento C3 , Mucosa Intestinal , Microbiota , Animales , Humanos , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neutrófilos , Complemento C3/metabolismo , Células del Estroma/metabolismo
2.
Cell ; 182(1): 38-49.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544385

RESUMEN

cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are immune sensors that synthesize nucleotide second messengers and initiate antiviral responses in bacterial and animal cells. Here, we discover Enterobacter cloacae CD-NTase-associated protein 4 (Cap4) as a founding member of a diverse family of >2,000 bacterial receptors that respond to CD-NTase signals. Structures of Cap4 reveal a promiscuous DNA endonuclease domain activated through ligand-induced oligomerization. Oligonucleotide recognition occurs through an appended SAVED domain that is an unexpected fusion of two CRISPR-associated Rossman fold (CARF) subunits co-opted from type III CRISPR immunity. Like a lock and key, SAVED effectors exquisitely discriminate 2'-5'- and 3'-5'-linked bacterial cyclic oligonucleotide signals and enable specific recognition of at least 180 potential nucleotide second messenger species. Our results reveal SAVED CARF family proteins as major nucleotide second messenger receptors in CBASS and CRISPR immune defense and extend the importance of linkage specificity beyond mammalian cGAS-STING signaling.


Asunto(s)
Bacterias/virología , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Inmunidad , Oligonucleótidos/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desoxirribonucleasa I/metabolismo , Ligandos , Mutagénesis/genética , Nucleotidiltransferasas/metabolismo , Unión Proteica , Sistemas de Mensajero Secundario
3.
Cell ; 174(2): 300-311.e11, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007416

RESUMEN

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.


Asunto(s)
ADN/metabolismo , Vigilancia Inmunológica/fisiología , Nucleotidiltransferasas/metabolismo , Animales , Benzofuranos/química , Benzofuranos/metabolismo , Sitios de Unión , Dominio Catalítico , Quimiotaxis/efectos de los fármacos , ADN/química , Humanos , Ratones , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Nucleótidos Cíclicos/metabolismo , Nucleótidos Cíclicos/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/genética , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad de la Especie , Vibrio cholerae/metabolismo , Vibrio cholerae/fisiología
4.
Cell ; 154(5): 962-970, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23993090

RESUMEN

Cyclic dinucleotides (CDNs) have been previously recognized as important secondary signaling molecules in bacteria and, more recently, in mammalian cells. In the former case, they represent secondary messengers affecting numerous responses of the prokaryotic cell, whereas in the latter, they act as agonists of the innate immune response. Remarkable new discoveries have linked these two patterns of utilization of CDNs as secondary messengers and have revealed unexpected influences they likely had on shaping human genetic variation. This Review summarizes these recent insights and provides a perspective on future unanswered questions in this exciting field.


Asunto(s)
Inmunidad Innata , Nucleótidos Cíclicos/metabolismo , Animales , Bacterias/metabolismo , Citocinas/inmunología , Humanos , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/química
5.
Cell ; 152(4): 884-94, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23415234

RESUMEN

The bacterial type VI secretion system (T6SS) is a dynamic organelle that bacteria use to target prey cells for inhibition via translocation of effector proteins. Time-lapse fluorescence microscopy has documented striking dynamics of opposed T6SS organelles in adjacent sister cells of Pseudomonas aeruginosa. Such cell-cell interactions have been termed "T6SS dueling" and likely reflect a biological process that is driven by T6SS antibacterial attack. Here, we show that T6SS dueling behavior strongly influences the ability of P. aeruginosa to prey upon heterologous bacterial species. We show that, in the case of P. aeruginosa, T6SS-dependent killing of either Vibrio cholerae or Acinetobacter baylyi is greatly stimulated by T6SS activity occurring in those prey species. Our data suggest that, in P. aeruginosa, T6SS organelle assembly and lethal counterattack are regulated by a signal that corresponds to the point of attack of the T6SS apparatus elaborated by a second aggressive T6SS(+) bacterial cell. PAPERFLICK:


Asunto(s)
Sistemas de Secreción Bacterianos , Bacterias Gramnegativas/metabolismo , Interacciones Microbianas , Pseudomonas aeruginosa/metabolismo , Acinetobacter/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Microscopía Fluorescente , Transducción de Señal , Imagen de Lapso de Tiempo , Vibrio cholerae/metabolismo
6.
Mol Cell ; 77(4): 723-733.e6, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31932164

RESUMEN

Bacteria possess an array of defenses against foreign invaders, including a broadly distributed bacteriophage defense system termed CBASS (cyclic oligonucleotide-based anti-phage signaling system). In CBASS systems, a cGAS/DncV-like nucleotidyltransferase synthesizes cyclic di- or tri-nucleotide second messengers in response to infection, and these molecules activate diverse effectors to mediate bacteriophage immunity via abortive infection. Here, we show that the CBASS effector NucC is related to restriction enzymes but uniquely assembles into a homotrimer. Binding of NucC trimers to a cyclic tri-adenylate second messenger promotes assembly of a NucC homohexamer competent for non-specific double-strand DNA cleavage. In infected cells, NucC activation leads to complete destruction of the bacterial chromosome, causing cell death prior to completion of phage replication. In addition to CBASS systems, we identify NucC homologs in over 30 type III CRISPR/Cas systems, where they likely function as accessory nucleases activated by cyclic oligoadenylate second messengers synthesized by these systems' effector complexes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Escherichia coli/virología , Regulación Alostérica , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Sistemas CRISPR-Cas , División del ADN , Enzimas de Restricción del ADN/química , Escherichia coli/enzimología , Escherichia coli/inmunología , Genoma Viral , Multimerización de Proteína , Sistemas de Mensajero Secundario
7.
Cell ; 149(2): 358-70, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500802

RESUMEN

The function of the Vibrio 7(th) pandemic island-1 (VSP-1) in cholera pathogenesis has remained obscure. Utilizing chromatin immunoprecipitation sequencing and RNA sequencing to map the regulon of the master virulence regulator ToxT, we identify a TCP island-encoded small RNA that reduces the expression of a previously unrecognized VSP-1-encoded transcription factor termed VspR. VspR modulates the expression of several VSP-1 genes including one that encodes a novel class of di-nucleotide cyclase (DncV), which preferentially synthesizes a previously undescribed hybrid cyclic AMP-GMP molecule. We show that DncV is required for efficient intestinal colonization and downregulates V. cholerae chemotaxis, a phenotype previously associated with hyperinfectivity. This pathway couples the actions of previously disparate genomic islands, defines VSP-1 as a pathogenicity island in V. cholerae, and implicates its occurrence in 7(th) pandemic strains as a benefit for host adaptation through the production of a regulatory cyclic di-nucleotide.


Asunto(s)
AMP Cíclico/biosíntesis , Nucleótidos Cíclicos/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidad , Animales , Proteínas Bacterianas , Secuencia de Bases , Regulación Viral de la Expresión Génica , Islas Genómicas , Humanos , Intestinos/microbiología , Redes y Vías Metabólicas , Ratones , Datos de Secuencia Molecular , Liasas de Fósforo-Oxígeno , ARN no Traducido/metabolismo , ARN Viral/metabolismo , Alineación de Secuencia , Factores de Transcripción , Vibrio cholerae/genética , Virulencia
8.
Nature ; 577(7791): 543-548, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915378

RESUMEN

Although maternal antibodies protect newborn babies from infection1,2, little is known about how protective antibodies are induced without prior pathogen exposure. Here we show that neonatal mice that lack the capacity to produce IgG are protected from infection with the enteric pathogen enterotoxigenic Escherichia coli by maternal natural IgG antibodies against the maternal microbiota when antibodies are delivered either across the placenta or through breast milk. By challenging pups that were fostered by either maternal antibody-sufficient or antibody-deficient dams, we found that IgG derived from breast milk was crucial for protection against mucosal disease induced by enterotoxigenic E. coli. IgG also provides protection against systemic infection by E. coli. Pups used the neonatal Fc receptor to transfer IgG from milk into serum. The maternal commensal microbiota can induce antibodies that recognize antigens expressed by enterotoxigenic E. coli and other Enterobacteriaceae species. Induction of maternal antibodies against a commensal Pantoea species confers protection against enterotoxigenic E. coli in pups. This role of the microbiota in eliciting protective antibodies to a specific neonatal pathogen represents an important host defence mechanism against infection in neonates.


Asunto(s)
Anticuerpos/inmunología , Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Inmunidad Materno-Adquirida/inmunología , Recién Nacido/inmunología , Microbiota/inmunología , Leche Humana/inmunología , Animales , Anticuerpos/sangre , Anticuerpos/metabolismo , Lactancia Materna , Reacciones Cruzadas/inmunología , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Masculino , Ratones , Madres , Pantoea/inmunología , Receptores Fc/inmunología , Receptores Fc/metabolismo , Simbiosis/inmunología
9.
Proc Natl Acad Sci U S A ; 120(4): e2219679120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649429

RESUMEN

The emergence of multidrug-resistant bacterial pathogens is a growing threat to global public health. Here, we report the development and characterization of a panel of nine-amino acid residue synthetic peptides that display potent antibacterial activity and the ability to disrupt preestablished microbial biofilms. The lead peptide (Peptide K6) showed bactericidal activity against Pseudomonas aeruginosa and Staphylococcus aureus in culture and in monocultures and mixed biofilms in vitro. Biophysical analysis revealed that Peptide K6 self-assembled into nanostructured micelles that correlated with its strong antibiofilm activity. When surface displayed on the outer membrane protein LamB, two copies of the Peptide K6 were highly bactericidal to Escherichia coli. Peptide K6 rapidly increased the permeability of bacterial cells, and resistance to this toxic peptide occurred less quickly than that to the potent antibiotic gentamicin. Furthermore, we found that Peptide K6 was safe and effective in clearing mixed P. aeruginosa-S. aureus biofilms in a mouse model of persistent infection. Taken together, the properties of Peptide K6 suggest that it is a promising antibiotic candidate and that design of additional short peptides that form micelles represents a worthwhile approach for the development of antimicrobial agents.


Asunto(s)
Antibacterianos , Coinfección , Animales , Ratones , Antibacterianos/farmacología , Micelas , Staphylococcus aureus , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Biopelículas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
10.
Nature ; 572(7768): 244-248, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31367037

RESUMEN

Vibrio cholerae is the causative agent of cholera, a potentially lethal enteric bacterial infection1. Cholera toxin (CTX), a protein complex that is secreted by V. cholerae, is required for V. cholerae to cause severe disease. CTX is also thought to promote transmission of the organism, as infected individuals shed many litres of diarrhoeal fluid that typically contains in excess of 1011 organisms per litre. How the pathogen is able to reach such high concentrations in the intestine during infection remains poorly understood. Here we show that CTX increases pathogen growth and induces a distinct V. cholerae transcriptomic signature that is indicative of an iron-depleted gut niche. During infection, bacterial pathogens need to acquire iron, which is an essential nutrient for growth2. Most iron in the mammalian host is found in a chelated form within the porphyrin structure of haem, and the ability to use haem as a source of iron is genetically encoded by V. cholerae3. We show that the genes that enable V. cholerae to obtain iron via haem and vibriobactin confer a growth advantage to the pathogen only when CTX is produced. Furthermore, we found that CTX-induced congestion of capillaries in the terminal ileum correlated with an increased bioavailability of luminal haem. CTX-induced disease in the ileum also led to increased concentrations of long-chain fatty acids and L-lactate metabolites in the lumen, as well as the upregulation of V. cholerae genes that encode enzymes of the tricarboxylic acid (TCA) cycle that contain iron-sulfur clusters. Genetic analysis of V. cholerae suggested that pathogen growth was dependent on the uptake of haem and long-chain fatty acids during infection, but only in a strain capable of producing CTX in vivo. We conclude that CTX-induced disease creates an iron-depleted metabolic niche in the gut, which selectively promotes the growth of V. cholerae through the acquisition of host-derived haem and fatty acids.


Asunto(s)
Toxina del Cólera/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/metabolismo , Animales , Cólera/metabolismo , Cólera/microbiología , Ciclo del Ácido Cítrico/efectos de los fármacos , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Hemo/metabolismo , Ácido Láctico/metabolismo , Ratones , Conejos , Análisis de Secuencia de ARN , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Vibrio cholerae/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda