Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Acta Neuropathol ; 147(1): 102, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888758

RESUMEN

Myasthenia gravis is a chronic antibody-mediated autoimmune disease disrupting neuromuscular synaptic transmission. Informative biomarkers remain an unmet need to stratify patients with active disease requiring intensified monitoring and therapy; their identification is the primary objective of this study. We applied mass spectrometry-based proteomic serum profiling for biomarker discovery. We studied an exploration and a prospective validation cohort consisting of 114 and 140 anti-acetylcholine receptor antibody (AChR-Ab)-positive myasthenia gravis patients, respectively. For downstream analysis, we applied a machine learning approach. Protein expression levels were confirmed by ELISA and compared to other myasthenic cohorts, in addition to myositis and neuropathy patients. Anti-AChR-Ab levels were determined by a radio receptor assay. Immunohistochemistry and immunofluorescence of intercostal muscle biopsies were employed for validation in addition to interactome studies of inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3). Machine learning identified ITIH3 as potential serum biomarker reflective of disease activity. Serum levels correlated with disease activity scores in the exploration and validation cohort and were confirmed by ELISA. Lack of correlation between anti-AChR-Ab levels and clinical scores underlined the need for biomarkers. In a subgroup analysis, ITIH3 was indicative of treatment responses. Immunostaining of muscle specimens from these patients demonstrated ITIH3 localization at the neuromuscular endplates in myasthenia gravis but not in controls, thus providing a structural equivalent for our serological findings. Immunoprecipitation of ITIH3 and subsequent proteomics lead to identification of its interaction partners playing crucial roles in neuromuscular transmission. This study provides data on ITIH3 as a potential pathophysiological-relevant biomarker of disease activity in myasthenia gravis. Future studies are required to facilitate translation into clinical practice.


Asunto(s)
Biomarcadores , Miastenia Gravis , Humanos , Miastenia Gravis/sangre , Miastenia Gravis/diagnóstico , Miastenia Gravis/patología , Miastenia Gravis/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Autoanticuerpos/sangre , Receptores Colinérgicos/inmunología , Receptores Colinérgicos/metabolismo , Proteómica/métodos , Estudios de Cohortes , Adulto Joven , Proteínas Inhibidoras de Proteinasas Secretoras/sangre , Aprendizaje Automático
2.
Brain Behav Immun ; 117: 399-411, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38309639

RESUMEN

BACKGROUND: Autoantibodies against the potassium voltage-gated channel subfamily A member 2 (KCNA2) have been described in a few cases of neuropsychiatric disorders, but their diagnostic and pathophysiological role is currently unknown, imposing challenges to medical practice. DESIGN / METHODS: We retrospectively collected comprehensive clinical and paraclinical data of 35 patients with KCNA2 IgG autoantibodies detected in cell-based and tissue-based assays. Patients' sera and cerebrospinal fluid (CSF) were used for characterization of the antigen, clinical-serological correlations, and determination of IgG subclasses. RESULTS: KCNA2 autoantibody-positive patients (n = 35, median age at disease onset of 65 years, range of 16-83 years, 74 % male) mostly presented with cognitive impairment and/or epileptic seizures but also ataxia, gait disorder and personality changes. Serum autoantibodies belonged to IgG3 and IgG1 subclasses and titers ranged from 1:32 to 1:10,000. KCNA2 IgG was found in the CSF of 8/21 (38 %) patients and in the serum of 4/96 (4.2 %) healthy blood donors. KCNA2 autoantibodies bound to characteristic anatomical areas in the cerebellum and hippocampus of mammalian brain and juxtaparanodal regions of peripheral nerves but reacted exclusively with intracellular epitopes. A subset of four KCNA2 autoantibody-positive patients responded markedly to immunotherapy alongside with conversion to seronegativity, in particular those presenting an autoimmune encephalitis phenotype and receiving early immunotherapy. An available brain biopsy showed strong immune cell invasion. KCNA2 autoantibodies occurred in less than 10 % in association with an underlying tumor. CONCLUSION: Our data suggest that KCNA2 autoimmunity is clinically heterogeneous. Future studies should determine whether KCNA2 autoantibodies are directly pathogenic or develop secondarily. Early immunotherapy should be considered, in particular if autoantibodies occur in CSF or if clinical or diagnostic findings suggest ongoing inflammation. Suspicious clinical phenotypes include autoimmune encephalitis, atypical dementia, new-onset epilepsy and unexplained epileptic seizures.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Autoinmunidad , Encefalitis , Enfermedad de Hashimoto , Animales , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Femenino , Estudios Retrospectivos , Autoanticuerpos , Convulsiones , Mamíferos , Canal de Potasio Kv.1.2
3.
Brain ; 146(2): 657-667, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35875984

RESUMEN

Autoimmune encephalitis can be classified into antibody-defined subtypes, which can manifest with immunotherapy-responsive movement disorders sometimes mimicking non-inflammatory aetiologies. In the elderly, anti-LGI1 and contactin associated protein like 2 (CASPR2) antibody-associated diseases compose a relevant fraction of autoimmune encephalitis. Patients with LGI1 autoantibodies are known to present with limbic encephalitis and additionally faciobrachial dystonic seizures may occur. However, the clinical spectrum of CASPR2 autoantibody-associated disorders is more diverse including limbic encephalitis, Morvan's syndrome, peripheral nerve hyperexcitability syndrome, ataxia, pain and sleep disorders. Reports on unusual, sometimes isolated and immunotherapy-responsive movement disorders in CASPR2 autoantibody-associated syndromes have caused substantial concern regarding necessity of autoantibody testing in patients with movement disorders. Therefore, we aimed to systematically assess their prevalence and manifestation in patients with CASPR2 autoimmunity. This international, retrospective cohort study included patients with CASPR2 autoimmunity from participating expert centres in Europe. Patients with ataxia and/or movement disorders were analysed in detail using questionnaires and video recordings. We recruited a comparator group with anti-LGI1 encephalitis from the GENERATE network. Characteristics were compared according to serostatus. We identified 164 patients with CASPR2 autoantibodies. Of these, 149 (90.8%) had only CASPR2 and 15 (9.1%) both CASPR2 and LGI1 autoantibodies. Compared to 105 patients with LGI1 encephalitis, patients with CASPR2 autoantibodies more often had movement disorders and/or ataxia (35.6 versus 3.8%; P < 0.001). This was evident in all subgroups: ataxia 22.6 versus 0.0%, myoclonus 14.6 versus 0.0%, tremor 11.0 versus 1.9%, or combinations thereof 9.8 versus 0.0% (all P < 0.001). The small group of patients double-positive for LGI1/CASPR2 autoantibodies (15/164) significantly more frequently had myoclonus, tremor, 'mixed movement disorders', Morvan's syndrome and underlying tumours. We observed distinct movement disorders in CASPR2 autoimmunity (14.6%): episodic ataxia (6.7%), paroxysmal orthostatic segmental myoclonus of the legs (3.7%) and continuous segmental spinal myoclonus (4.3%). These occurred together with further associated symptoms or signs suggestive of CASPR2 autoimmunity. However, 2/164 patients (1.2%) had isolated segmental spinal myoclonus. Movement disorders and ataxia are highly prevalent in CASPR2 autoimmunity. Paroxysmal orthostatic segmental myoclonus of the legs is a novel albeit rare manifestation. Further distinct movement disorders include isolated and combined segmental spinal myoclonus and autoimmune episodic ataxia.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Encefalitis Límbica , Trastornos del Movimiento , Mioclonía , Canales de Potasio con Entrada de Voltaje , Humanos , Anciano , Estudios Retrospectivos , Temblor , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ataxia , Autoanticuerpos , Trastornos del Movimiento/etiología , Contactinas/metabolismo
4.
Brain ; 146(2): 600-611, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35259208

RESUMEN

Anti-IgLON5 disease is a newly defined clinical entity characterized by a progressive course with high disability and mortality rate. While precise pathogenetic mechanisms remain unclear, features characteristic of both autoimmune and neurodegenerative diseases were reported. Data on immunotherapy are limited, and its efficacy remains controversial. In this study, we retrospectively investigated an anti-IgLON5 disease cohort with special focus on clinical, serological and genetic predictors of the immunotherapy response and long-term outcome. Patients were recruited from the GENERATE (German Network for Research on Autoimmune Encephalitis) registry. Along with clinical parameters, anti-IgLON5 immunoglobulin (Ig)G in serum and CSF, anti-IgLON5 IgG1-4, IgA and IgM in serum, neurofilament light chain and glial fibrillary acidic protein in serum as well as human leukocyte antigen-genotypes were determined. We identified 53 patients (symptom onset 63.8 ± 10.3 years, female:male 1:1.5). The most frequent initial clinical presentations were bulbar syndrome, hyperkinetic syndrome or isolated sleep disorder [at least one symptom present in 38% (20/53)]. At the time of diagnosis, the majority of patients had a generalized multi-systemic phenotype; nevertheless, 21% (11/53) still had an isolated brainstem syndrome and/or a characteristic sleep disorder only. About one third of patients [28% (15/53)] reported subacute disease onset and 51% (27/53) relapse-like exacerbations during the disease course. Inflammatory CSF changes were evident in 37% (19/51) and increased blood-CSF-barrier permeability in 46% (21/46). CSF cell count significantly decreased, while serum anti-IgLON5 IgG titre increased with disease duration. The presence of human leukocyte antigen-DRB1*10:01 [55% (24/44)] was associated with higher serum anti-IgLON5 IgG titres. Neurofilament light chain and glial fibrillary acidic protein in serum were substantially increased (71.1 ± 103.9 pg/ml and 126.7 ± 73.3 pg/ml, respectively). First-line immunotherapy of relapse-like acute-to-subacute exacerbation episodes resulted in improvement in 41% (11/27) of patients and early initiation within the first 6 weeks was a predictor for therapy response. Sixty-eight per cent (36/53) of patients were treated with long-term immunotherapy and 75% (27/36) of these experienced no further disease progression (observation period of 20.2 ± 15.4 months). Long-term immunotherapy initiation during the first year after onset and low pre-treatment neurofilament light chain were significant predictors for a better outcome. In conclusion, subacute disease onset and early inflammatory CSF changes support the primary role of autoimmune mechanisms at least at initial stages of anti-IgLON5 disease. Early immunotherapy, prior to advanced neurodegeneration, is associated with a better long-term clinical outcome. Low serum neurofilament light chain at treatment initiation may serve as a potential biomarker of the immunotherapy response.


Asunto(s)
Trastornos del Sueño-Vigilia , Humanos , Masculino , Femenino , Proteína Ácida Fibrilar de la Glía , Estudios Retrospectivos , Inmunoglobulina G/metabolismo , Progresión de la Enfermedad , Inmunoterapia
5.
Cereb Cortex ; 33(8): 4562-4573, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36124830

RESUMEN

The insula plays a central role in empathy. However, the complex structure of cognitive (CE) and affective empathy (AE) deficits following insular damage is not fully understood. In the present study, patients with insular lesions (n = 20) and demographically matched healthy controls (n = 24) viewed ecologically valid videos that varied in terms of valence and emotional intensity. The videos showed a person (target) narrating a personal life event. In CE conditions, subjects continuously rated the affective state of the target, while in AE conditions, they continuously rated their own affect. Mean squared error (MSE) assessed deviations between subject and target ratings. Patients differed from controls only in negative, low-intensity AE, rating their own affective state less negative than the target. This deficit was not related to trait empathy, neuropsychological or clinical parameters, or laterality of lesion. Empathic functions may be widely spared after insular damage in a naturalistic, dynamic setting, potentially due to the intact interpretation of social context by residual networks outside the lesion. The particular role of the insula in AE for negative states may evolve specifically in situations that bear higher uncertainty pointing to a threshold role of the insula in online ratings of AE.


Asunto(s)
Emociones , Empatía , Humanos , Lateralidad Funcional , Trastornos del Humor/etiología , Cognición
6.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619082

RESUMEN

Encephalitis associated with antibodies against the neuronal gamma-aminobutyric acid A receptor (GABAA-R) is a rare form of autoimmune encephalitis. The pathogenesis is still unknown but autoimmune mechanisms were surmised. Here we identified a strongly expanded B cell clone in the cerebrospinal fluid of a patient with GABAA-R encephalitis. We expressed the antibody produced by it and showed by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry that it recognizes the GABAA-R. Patch-clamp recordings revealed that it tones down inhibitory synaptic transmission and causes increased excitability of hippocampal CA1 pyramidal neurons. Thus, the antibody likely contributed to clinical disease symptoms. Hybridization to a protein array revealed the cross-reactive protein LIM-domain-only protein 5 (LMO5), which is related to cell-cycle regulation and tumor growth. We confirmed LMO5 recognition by immunoprecipitation and ELISA and showed that cerebrospinal fluid samples from two other patients with GABAA-R encephalitis also recognized LMO5. This suggests that cross-reactivity between GABAA-R and LMO5 is frequent in GABAA-R encephalitis and supports the hypothesis of a paraneoplastic etiology.


Asunto(s)
Antígenos de Neoplasias/inmunología , Autoanticuerpos/inmunología , Reacciones Cruzadas/inmunología , Susceptibilidad a Enfermedades , Encefalitis/etiología , Receptores de GABA-A/inmunología , Autoantígenos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/etiología , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Autoinmunidad , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Susceptibilidad a Enfermedades/inmunología , Encefalitis/metabolismo , Encefalitis/patología , Humanos , Células Piramidales/inmunología , Células Piramidales/metabolismo
7.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255863

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) of still unclear etiology. In recent years, the search for biomarkers facilitating its diagnosis, prognosis, therapy response, and other parameters has gained increasing attention. In this regard, in a previous meta-analysis comprising 22 studies, we found that MS is associated with higher nitrite/nitrate (NOx) levels in the cerebrospinal fluid (CSF) compared to patients with non-inflammatory other neurological diseases (NIOND). However, many of the included studies did not distinguish between the different clinical subtypes of MS, included pre-treated patients, and inclusion criteria varied. As a follow-up to our meta-analysis, we therefore aimed to analyze the serum and CSF NOx levels in clinically well-defined cohorts of treatment-naïve MS patients compared to patients with somatic symptom disorder. To this end, we analyzed the serum and CSF levels of NOx in 117 patients (71 relapsing-remitting (RR) MS, 16 primary progressive (PP) MS, and 30 somatic symptom disorder). We found that RRMS and PPMS patients had higher serum NOx levels compared to somatic symptom disorder patients. This difference remained significant in the subgroup of MRZ-negative RRMS patients. In conclusion, the measurement of NOx in the serum might indeed be a valuable tool in supporting MS diagnosis.


Asunto(s)
Enfermedades Autoinmunes , Síntomas sin Explicación Médica , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Estrés Nitrosativo , Sistema Nervioso Central
8.
Nervenarzt ; 2024 Jul 02.
Artículo en Alemán | MEDLINE | ID: mdl-38953922

RESUMEN

OBJECTIVE: While the neuronal mechanisms of epileptic hyperexcitability (HE) have been studied in detail, recent findings suggest that extraneuronal, mainly immune-mediated inflammatory and vascular mechanisms play an important role in the development and progression of HE in epilepsy and the cognitive and behavioral comorbidities. MATERIAL AND METHODS: Narrative review. RESULTS: As in autoimmune (limbic) encephalitis (ALE/AIE) or Rasmussen's encephalitis (RE), the primary adaptive and innate immune responses and associated changes in the blood-brain barrier (BBB) and neurovascular unit (NVU) can cause acute cortical hyperexcitability (HE) and the development of hippocampal sclerosis (HS) and other structural cortical lesions with chronic HE. Cortical HE, which is associated with malformation of cortical development (MCD) and low-grade epilepsy-associated tumors (LEAT), for example, can be accompanied by secondary adaptive and innate immune responses and alterations in the BBB and NVU, potentially modulating the ictogenicity and epileptogenicity. These associations illustrate the influence of adaptive and innate immune mechanisms and associated changes in the BBB and NVU on cortical excitability and vice versa, suggesting a dynamic and complex interplay of these factors in the development and progression of epilepsy in general. DISCUSSION: The described concept of a neuro-immune-vascular interaction in focal epilepsy opens up new possibilities for the pathogenetic understanding and thus also for the selective therapeutic intervention.

9.
Crit Care Med ; 51(12): 1754-1765, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37638780

RESUMEN

OBJECTIVES: Seizures and status epilepticus (SE) are frequent complications of acute subdural hematoma (aSDH) associated with increased morbidity and mortality. Therefore, we aimed to evaluate whether invasive subdural electroencephalogram recording leads to earlier seizure detection and treatment initiation in patients with aSDH. DESIGN: Prospective, single-center, cohort trial. SETTING: Neurologic and neurosurgical ICUs of one academic hospital in Germany. PATIENTS: Patients with aSDH undergoing surgical treatment. In total, 76 patients were enrolled in this study, 31 patients (40.8%) were assigned to the invasive electroencephalogram (iEEG) monitoring group and 45 patients (59.2%) to control group. INTERVENTIONS: The electrode group was implanted with a subdural strip electrode providing up to 7 days of real-time electroencephalogram recording in the neurointensive care unit, whereas the control group received regular normal surface electroencephalograms during the 7-day period. The primary outcomes were the prevalence and time to seizures and SE occurrence. Secondary outcomes included neurologic outcomes assessed using the Glasgow Outcome Scale (GOS) at discharge and 6-month follow-up and the prevalence of focal structural epilepsy within 2 years after discharge. MEASUREMENTS AND MAIN RESULTS: The trial was stopped after a study committee meeting when the prespecified criteria were met. The iEEG and control groups were well-matched for clinical characteristics at admission. Frequencies of seizures and SE detection were significantly higher in the iEEG group than in the control group (61% vs 15.6%; p < 0.001 and 38.7% vs 11.1%; p = 0.005). Time to seizure and SE detection was significantly earlier (median 29.2 vs 83.8 hr; p = 0.018 and 17.2 vs 83.8 hr; p = 0.033) in the iEEG group than in the control group. Favorable outcomes (GOS 4-5) were more frequently achieved in the iEEG group than in the control group (58% vs 31%; p = 0.065). No significant differences were detected in long-term mortality or post-traumatic epilepsy. CONCLUSIONS: Invasive subdural electroencephalogram monitoring is valuable and safe for early seizure/SE detection and treatment and might improve outcomes in the neurocritical care of patients with aSDH.


Asunto(s)
Hematoma Subdural Agudo , Estado Epiléptico , Humanos , Estudios Prospectivos , Resultado del Tratamiento , Hematoma Subdural/diagnóstico , Convulsiones/diagnóstico , Convulsiones/epidemiología , Electroencefalografía , Hematoma Subdural Agudo/epidemiología , Hematoma Subdural Agudo/cirugía , Estado Epiléptico/diagnóstico , Electrodos , Estudios Retrospectivos
10.
J Autoimmun ; 135: 102985, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621173

RESUMEN

Autoimmune Encephalitis (AE) spans a group of non-infectious inflammatory conditions of the central nervous system due to an imbalanced immune response. Aiming to elucidate the pathophysiological mechanisms of AE, we applied an unsupervised proteomic approach to analyze the cerebrospinal fluid (CSF) protein profile of AE patients with autoantibodies against N-methyl-d-aspartate receptor (NMDAR) (n = 9), leucine-rich glioma-inactivated protein 1 (LGI1) (n = 9), or glutamate decarboxylase 65 (GAD65) (n = 8) compared to 9 patients with relapsing-remitting multiple sclerosis as inflammatory controls, and 10 patients with somatic symptom disorder as non-inflammatory controls. We found a dysregulation of the complement system, a disbalance between pro-inflammatory and anti-inflammatory proteins on the one hand, and dysregulation of proteins involved in synaptic transmission, synaptogenesis, brain connectivity, and neurodegeneration on the other hand to a different extent in all AE subtypes compared to non-inflammatory controls. Furthermore, elevated levels of several proteases and reduction in protease inhibitors could be detected in all AE subtypes compared to non-inflammatory controls. Moreover, the different AE subtypes showed distinct protein profiles compared to each other and inflammatory controls which may facilitate future identification of disease-specific biomarkers. Overall, CSF proteomics provides insights into the complex pathophysiological mechanisms of AE, including immune dysregulation, neuronal dysfunction, neurodegeneration, and altered protease function.


Asunto(s)
Encefalitis , Esclerosis Múltiple Recurrente-Remitente , Humanos , Proteómica , Proteínas , Autoanticuerpos
11.
Brain ; 145(5): 1711-1725, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35661859

RESUMEN

Alemtuzumab is a monoclonal antibody that causes rapid depletion of CD52-expressing immune cells. It has proven to be highly efficacious in active relapsing-remitting multiple sclerosis; however, the high risk of secondary autoimmune disorders has greatly complicated its use. Thus, deeper insight into the pathophysiology of secondary autoimmunity and potential biomarkers is urgently needed. The most critical time points in the decision-making process for alemtuzumab therapy are before or at Month 12, where the ability to identify secondary autoimmunity risk would be instrumental. Therefore, we investigated components of blood and CSF of up to 106 multiple sclerosis patients before and after alemtuzumab treatment focusing on those critical time points. Consistent with previous reports, deep flow cytometric immune-cell profiling (n = 30) demonstrated major effects on adaptive rather than innate immunity, which favoured regulatory immune cell subsets within the repopulation. The longitudinally studied CSF compartment (n = 18) mainly mirrored the immunological effects observed in the periphery. Alemtuzumab-induced changes including increased numbers of naïve CD4+ T cells and B cells as well as a clonal renewal of CD4+ T- and B-cell repertoires were partly reminiscent of haematopoietic stem cell transplantation; in contrast, thymopoiesis was reduced and clonal renewal of T-cell repertoires after alemtuzumab was incomplete. Stratification for secondary autoimmunity did not show clear immununological cellular or proteomic traits or signatures associated with secondary autoimmunity. However, a restricted T-cell repertoire with hyperexpanded T-cell clones at baseline, which persisted and demonstrated further expansion at Month 12 by homeostatic proliferation, identified patients developing secondary autoimmune disorders (n = 7 without secondary autoimmunity versus n = 5 with secondary autoimmunity). Those processes were followed by an expansion of memory B-cell clones irrespective of persistence, which we detected shortly after the diagnosis of secondary autoimmune disease. In conclusion, our data demonstrate that (i) peripheral immunological alterations following alemtuzumab are mirrored by longitudinal changes in the CSF; (ii) incomplete T-cell repertoire renewal and reduced thymopoiesis contribute to a proautoimmune state after alemtuzumab; (iii) proteomics and surface immunological phenotyping do not identify patients at risk for secondary autoimmune disorders; (iv) homeostatic proliferation with disparate dynamics of clonal T- and B-cell expansions are associated with secondary autoimmunity; and (v) hyperexpanded T-cell clones at baseline and Month 12 may be used as a biomarker for the risk of alemtuzumab-induced autoimmunity.


Asunto(s)
Enfermedades Autoinmunes , Autoinmunidad , Alemtuzumab/efectos adversos , Enfermedades Autoinmunes/inducido químicamente , Humanos , Fenotipo , Proteómica
12.
Ann Neurol ; 89(4): 666-685, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368582

RESUMEN

OBJECTIVE: Limbic encephalitis (LE) comprises a spectrum of inflammatory changes in affected brain structures including the presence of autoantibodies and lymphoid cells. However, the potential of distinct lymphocyte subsets alone to elicit key clinicopathological sequelae of LE potentially inducing temporal lobe epilepsy (TLE) with chronic spontaneous seizures and hippocampal sclerosis (HS) is unresolved. METHODS: Here, we scrutinized pathogenic consequences emerging from CD8+ T cells targeting hippocampal neurons by recombinant adeno-associated virus-mediated expression of the model-autoantigen ovalbumin (OVA) in CA1 neurons of OT-I/RAG1-/- mice (termed "OVA-CD8+ LE model"). RESULTS: Viral-mediated antigen transfer caused dense CD8+ T cell infiltrates confined to the hippocampal formation starting on day 5 after virus transduction. Flow cytometry indicated priming of CD8+ T cells in brain-draining lymph nodes preceding hippocampal invasion. At the acute model stage, the inflammatory process was accompanied by frequent seizure activity and impairment of hippocampal memory skills. Magnetic resonance imaging scans at day 7 of the OVA-CD8+ LE model revealed hippocampal edema and blood-brain barrier disruption that converted into atrophy until day 40. CD8+ T cells specifically targeted OVA-expressing, SIINFEKL-H-2Kb -positive CA1 neurons and caused segmental apoptotic neurodegeneration, astrogliosis, and microglial activation. At the chronic model stage, mice exhibited spontaneous recurrent seizures and persisting memory deficits, and the sclerotic hippocampus was populated with CD8+ T cells escorted by NK cells. INTERPRETATION: These data indicate that a CD8+ T-cell-initiated attack of distinct hippocampal neurons is sufficient to induce LE converting into TLE-HS. Intriguingly, the role of CD8+ T cells exceeds neurotoxic effects and points to their major pathogenic role in TLE following LE. ANN NEUROL 2021;89:666-685.


Asunto(s)
Linfocitos T CD8-positivos/patología , Epilepsia del Lóbulo Temporal/etiología , Epilepsia del Lóbulo Temporal/patología , Encefalitis Límbica/complicaciones , Encefalitis Límbica/patología , Animales , Barrera Hematoencefálica/patología , Región CA1 Hipocampal/patología , Epilepsia del Lóbulo Temporal/psicología , Hipocampo/patología , Proteínas de Homeodominio/genética , Encefalitis Límbica/psicología , Ganglios Linfáticos/patología , Imagen por Resonancia Magnética , Trastornos de la Memoria/etiología , Trastornos de la Memoria/psicología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/patología , Ovalbúmina/genética , Ovalbúmina/inmunología , Fragmentos de Péptidos/genética , Convulsiones/genética , Convulsiones/patología
13.
J Neurol Neurosurg Psychiatry ; 93(5): 548-554, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35246490

RESUMEN

OBJECTIVE: Myasthenia gravis (MG) is the most common autoimmune disorder affecting the neuromuscular junction. However, evidence shaping treatment decisions, particularly for treatment-refractory cases, is sparse. Both rituximab and eculizumab may be considered as therapeutic options for refractory MG after insufficient symptom control by standard immunosuppressive therapies. METHODS: In this retrospective observational study, we included 57 rituximab-treated and 20 eculizumab-treated patients with MG to compare the efficacy of treatment agents in generalised, therapy-refractory anti-acetylcholine receptor antibody (anti-AChR-ab)-mediated MG with an observation period of 24 months. Change in the quantitative myasthenia gravis (QMG) score was defined as the primary outcome parameter. Differences between groups were determined in an optimal full propensity score matching model. RESULTS: Both groups were comparable in terms of clinical and demographic characteristics. Eculizumab was associated with a better outcome compared with rituximab, as measured by the change of the QMG score at 12 and 24 months of treatment. Minimal manifestation of disease was more frequently achieved in eculizumab-treated patients than rituximab-treated patients at 12 and 24 months after baseline. However, the risk of myasthenic crisis (MC) was not ameliorated in either group. INTERPRETATION: This retrospective, observational study provides the first real-world evidence supporting the use of eculizumab for the treatment of refractory, anti-AChR-ab positive MG. Nonetheless, the risk of MC remained high and prompts the need for intensified monitoring and further research effort aimed at this vulnerable patient cohort.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Miastenia Gravis , Anticuerpos Monoclonales Humanizados/uso terapéutico , Humanos , Estudios Retrospectivos , Rituximab/uso terapéutico
14.
J Neurol Neurosurg Psychiatry ; 93(9): 978-985, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35193952

RESUMEN

BACKGROUND: Vaccination has proven to be effective in preventing SARS-CoV-2 transmission and severe disease courses. However, immunocompromised patients have not been included in clinical trials and real-world clinical data point to an attenuated immune response to SARS-CoV-2 vaccines among patients with multiple sclerosis (MS) receiving immunomodulatory therapies. METHODS: We performed a retrospective study including 59 ocrelizumab (OCR)-treated patients with MS who received SARS-CoV-2 vaccination. Anti-SARS-CoV-2-antibody titres, routine blood parameters and peripheral immune cell profiles were measured prior to the first (baseline) and at a median of 4 weeks after the second vaccine dose (follow-up). Moreover, the SARS-CoV-2-specific T cell response and peripheral B cell subsets were analysed at follow-up. Finally, vaccination-related adverse events were assessed. RESULTS: After vaccination, we found anti-SARS-CoV-2(S) antibodies in 27.1% and a SARS-CoV-2-specific T cell response in 92.7% of MS cases. T cell-mediated interferon (IFN)-γ release was more pronounced in patients without anti-SARS-CoV-2(S) antibodies. Antibody titres positively correlated with peripheral B cell counts, time since last infusion and total IgM levels. They negatively correlated with the number of previous infusion cycles. Peripheral plasma cells were increased in antibody-positive patients. A positive correlation between T cell response and peripheral lymphocyte counts was observed. Moreover, IFN-γ release was negatively correlated with the time since the last infusion. CONCLUSION: In OCR-treated patients with MS, the humoral immune response to SARS-CoV-2 vaccination is attenuated while the T cell response is preserved. However, it is still unclear whether T or B cell-mediated immunity is required for effective clinical protection. Nonetheless, given the long-lasting clinical effects of OCR, monitoring of peripheral B cell counts could facilitate individualised treatment regimens and might be used to identify the optimal time to vaccinate.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Vacunas Virales , Anticuerpos Monoclonales Humanizados , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Humanos , Inmunidad , Esclerosis Múltiple/tratamiento farmacológico , Estudios Retrospectivos , SARS-CoV-2 , Vacunación
15.
Mol Psychiatry ; 26(12): 7661-7670, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34363013

RESUMEN

Psychotic disorders are common and disabling mental conditions. The relative importance of immune-related mechanisms in psychotic disorders remains subject of debate. Here, we present a large-scale retrospective study of blood and cerebrospinal fluid (CSF) immune cell profiles of psychosis spectrum patients. We performed basic CSF analysis and multi-dimensional flow cytometry of CSF and blood cells from 59 patients with primary psychotic disorders (F20, F22, F23, and F25) in comparison to inflammatory (49 RRMS and 16 NMDARE patients) and non-inflammatory controls (52 IIH patients). We replicated the known expansion of monocytes in the blood of psychosis spectrum patients, that we identified to preferentially affect classical monocytes. In the CSF, we found a relative shift from lymphocytes to monocytes, increased protein levels, and evidence of blood-brain barrier disruption in psychosis. In fact, these CSF features confidently distinguished autoimmune encephalitis from psychosis despite similar (initial) clinical features. We then constructed machine learning models incorporating blood and CSF parameters and demonstrated their superior ability to differentiate psychosis from non-inflammatory controls compared to individual parameters. Multi-dimensional and multi-compartment immune cell signatures can thus support the diagnosis of psychosis spectrum disorders with the potential to accelerate diagnosis and initiation of therapy.


Asunto(s)
Encefalitis , Trastornos Psicóticos , Líquido Cefalorraquídeo , Diagnóstico Diferencial , Citometría de Flujo , Humanos , Trastornos Psicóticos/líquido cefalorraquídeo , Estudios Retrospectivos
16.
Eur J Neurol ; 29(8): 2309-2320, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35582936

RESUMEN

BACKGROUND AND PURPOSE: The aim of this study was to investigate the relevance of compartmentalized grey matter (GM) pathology and network reorganization in multiple sclerosis (MS) patients with concomitant epilepsy. METHODS: From 3-T magnetic resonance imaging scans of 30 MS patients with epilepsy (MSE group; age 41 ± 15 years, 21 females, disease duration 8 ± 6 years, median Expanded Disability Status Scale [EDSS] score 3), 60 MS patients without epilepsy (MS group; age 41 ± 12 years, 35 females, disease duration 6 ± 4 years, EDSS score 2), and 60 healthy subjects (HS group; age 40 ± 13 years, 27 females) the regional volumes of GM lesions and of cortical, subcortical and hippocampal structures were quantified. Network topology and vulnerability were modelled within the graph theoretical framework. Receiver-operating characteristic (ROC) curve analysis was applied to assess the accuracy of GM pathology measures to discriminate between MSE and MS patients. RESULTS: Higher lesion volumes within the hippocampus, mesiotemporal cortex and amygdala were detected in the MSE compared to the MS group (all p < 0.05). The MSE group had lower cortical volumes mainly in temporal and parietal areas compared to the MS and HS groups (all p < 0.05). Lower hippocampal tail and presubiculum volumes were identified in both the MSE and MS groups compared to the HS group (all p < 0.05). Network topology in the MSE group was characterized by higher transitivity and assortativity, and higher vulnerability compared to the MS and HS groups (all p < 0.05). Hippocampal lesion volume yielded the highest accuracy (area under the ROC curve 0.80 [0.67-0.91]) in discriminating between MSE and MS patients. CONCLUSIONS: High lesion load, altered integrity of mesiotemporal GM structures, and network reorganization are associated with a greater propensity for epilepsy occurrence in people with MS.


Asunto(s)
Epilepsia , Esclerosis Múltiple , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Epilepsia/patología , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología
17.
Brain ; 144(9): 2625-2634, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33848319

RESUMEN

Although CSF analysis routinely enables the diagnosis of neurological diseases, it is mainly used for the gross distinction between infectious, autoimmune inflammatory, and degenerative disorders of the CNS. To investigate, whether a multi-dimensional cellular blood and CSF characterization can support the diagnosis of clinically similar neurological diseases, we analysed 546 patients with autoimmune neuroinflammatory, degenerative, or vascular conditions in a cross-sectional retrospective study. By combining feature selection with dimensionality reduction and machine learning approaches we identified pan-disease parameters that were altered across all autoimmune neuroinflammatory CNS diseases and differentiated them from other neurological conditions and inter-autoimmunity classifiers that subdifferentiate variants of CNS-directed autoimmunity. Pan-disease as well as diseases-specific changes formed a continuum, reflecting clinical disease evolution. A validation cohort of 231 independent patients confirmed that combining multiple parameters into composite scores can assist the classification of neurological patients. Overall, we showed that the integrated analysis of blood and CSF parameters improves the differential diagnosis of neurological diseases, thereby facilitating early treatment decisions.


Asunto(s)
Mediadores de Inflamación/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso/clasificación , Biomarcadores/líquido cefalorraquídeo , Estudios de Cohortes , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Enfermedades del Sistema Nervioso/diagnóstico , Estudios Retrospectivos
18.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409067

RESUMEN

Autoimmune encephalitis associated with antibodies (Abs) against α1, ß3, and γ2 subunits of γ-aminobutyric acid receptor A (GABAAR) represents a severe form of encephalitis with refractory seizures and status epilepticus. Reduction in inhibitory GABAergic synaptic activity is linked to dysfunction of neuronal networks, hyperexcitability, and seizures. The aim in this study was to investigate the direct pathogenic effect of a recombinant GABAAR autoantibody (rAb-IP2), derived from the cerebrospinal fluid (CSF) of a patient with autoimmune GABAAR encephalitis, on hippocampal CA1 and CA3 networks. Acute brain slices from C57BL/6 mice were incubated with rAb-IP2. The spontaneous synaptic GABAergic transmission was measured using electrophysiological recordings in voltage-clamp mode. The GABAAR autoantibody rAb-IP2 reduced inhibitory postsynaptic signaling in the hippocampal CA1 pyramidal neurons with regard to the number of spontaneous inhibitory postsynaptic currents (sIPSCs) but did not affect their amplitude. In the hippocampal CA3 network, decreased number and amplitude of sIPSCs were detected, leading to decreased GABAergic synaptic transmission. Immunohistochemical staining confirmed the rAb-IP2 bound to hippocampal tissue. These findings suggest that GABAAR autoantibodies exert direct functional effects on both hippocampal CA1 and CA3 pyramidal neurons and play a crucial role in seizure generation in GABAAR autoimmune encephalitis.


Asunto(s)
Encefalitis , Receptores de GABA-A , Animales , Autoanticuerpos/metabolismo , Encefalitis/metabolismo , Enfermedad de Hashimoto , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Células Piramidales/metabolismo , Receptores de GABA-A/metabolismo , Convulsiones/metabolismo , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo
19.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613687

RESUMEN

Anti-NMDA receptor (NMDAR) encephalitis is frequently associated with demyelinating disorders (e.g., multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein-associated disease (MOGAD)) with regard to clinical presentation, neuropathological and cerebrospinal fluid findings. Indeed, autoantibodies (AABs) against the GluN1 (NR1) subunit of the NMDAR diminish glutamatergic transmission in both neurons and oligodendrocytes, leading to a state of NMDAR hypofunction. Considering the vital role of oligodendroglial NMDAR signaling in neuron-glia communication and, in particular, in tightly regulated trophic support to neurons, the influence of GluN1 targeting on the physiology of myelinated axon may be of importance. We applied a myelinating spinal cord cell culture model that contains all major CNS cell types, to evaluate the effects of a patient-derived GluN1-specific monoclonal antibody (SSM5) on neuronal and myelin integrity. A non-brain reactive (12D7) antibody was used as the corresponding isotype control. We show that in cultures at the late stage of myelination, prolonged treatment with SSM5, but not 12D7, leads to neuronal damage. This is characterized by neurite blebbing and fragmentation, and a reduction in the number of myelinated axons. However, this significant toxic effect of SSM5 was not observed in earlier cultures at the beginning of myelination. Anti-GluN1 AABs induce neurodegenerative changes and associated myelin loss in myelinated spinal cord cultures. These findings may point to the higher vulnerability of myelinated neurons towards interference in glutamatergic communication, and may refer to the disturbance of the NMDAR-mediated oligodendrocyte metabolic supply. Our work contributes to the understanding of the emerging association of NMDAR encephalitis with demyelinating disorders.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Neuromielitis Óptica , Humanos , Técnicas de Cocultivo , Receptores de N-Metil-D-Aspartato/metabolismo , Neuroglía/metabolismo , Glicoproteína Mielina-Oligodendrócito , Autoanticuerpos , Acuaporina 4
20.
Hippocampus ; 31(10): 1092-1103, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34270832

RESUMEN

Autoimmune limbic encephalitis (ALE) is the most common type of autoimmune encephalitis (AIE). Subacute memory disturbance, temporal lobe seizures, and psychiatric symptoms are clinical hallmarks of the disease. However, little is known on the factors contributing to cognitive functioning in ALE. Hence, we here investigate major determinants of cognitive functioning in ALE. In a retrospective analysis of 102 patients with ALE, we first compared verbal learning capacity, nonverbal learning capacity, and attentional and executive functioning by absence or presence of different types of neural autoantibodies (AABs). Subsequently we established three linear regression models including 63, 38, and 61 patients, respectively to investigate how cognitive functioning in these domains may depend on common markers of ALE such as intrathecal inflammation, blood-cerebrospinal fluid (CSF)-barrier function, mesiotemporal epileptiform discharges and slowing, determined by electroencephalography (EEG) and structural mesiotemporal changes, measured with magnetic resonance imaging (MRI). We also accounted for possible effects of cancer- and immunotherapy and other centrally effective medication. There was no effect of AAB status on cognitive functioning. Although the regression models could not predict verbal and nonverbal learning capacity, structural mesiotemporal neural network alterations on T2-/fluid attenuated inversion recovery (FLAIR)-signal-weighted MRI and mesiotemporal epileptiform discharges or slowing on EEG exerted a significant impact on memory functions. In contrast, the regression model significantly predicted attentional and executive functioning with CSF white blood cell count and centrally effective medication being significant determinants. In this cohort, cognitive functioning in ALE does not depend on the AAB status. Common markers of ALE cannot predict memory functioning that only partially depends on structural and functional alterations of mesiotemporal neural networks. Common markers of ALE significantly predict attentional and executive functioning that is significantly related to centrally effective medication and CSF white blood cell count, which may point toward inflammation affecting brain regions beyond the limbic system.


Asunto(s)
Enfermedades Autoinmunes , Encefalitis Límbica , Cognición , Humanos , Encefalitis Límbica/complicaciones , Encefalitis Límbica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda