Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
BMC Genomics ; 19(1): 98, 2018 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-29374456

RESUMEN

BACKGROUND: While autozygosity as a consequence of selection is well understood, there is limited information on the ability of different methods to measure true inbreeding. In the present study, a gene dropping simulation was performed and inbreeding estimates based on runs of homozygosity (ROH), pedigree, and the genomic relationship matrix were compared to true inbreeding. Inbreeding based on ROH was estimated using SNP1101, PLINK, and BCFtools software with different threshold parameters. The effects of different selection methods on ROH patterns were also compared. Furthermore, inbreeding coefficients were estimated in a sample of genotyped North American Holstein animals born from 1990 to 2016 using 50 k chip data and ROH patterns were assessed before and after genomic selection. RESULTS: Using ROH with a minimum window size of 20 to 50 using SNP1101 provided the closest estimates to true inbreeding in simulation study. Pedigree inbreeding tended to underestimate true inbreeding, and results for genomic inbreeding varied depending on assumptions about base allele frequencies. Using an ROH approach also made it possible to assess the effect of population structure and selection on distribution of runs of autozygosity across the genome. In the simulation, the longest individual ROH and the largest average length of ROH were observed when selection was based on best linear unbiased prediction (BLUP), whereas genomic selection showed the largest number of small ROH compared to BLUP estimated breeding values (BLUP-EBV). In North American Holsteins, the average number of ROH segments of 1 Mb or more per individual increased from 57 in 1990 to 82 in 2016. The rate of increase in the last 5 years was almost double that of previous 5 year periods. Genomic selection results in less autozygosity per generation, but more per year given the reduced generation interval. CONCLUSIONS: This study shows that existing software based on the measurement of ROH can accurately identify autozygosity across the genome, provided appropriate threshold parameters are used. Our results show how different selection strategies affect the distribution of ROH, and how the distribution of ROH has changed in the North American dairy cattle population over the last 25 years.


Asunto(s)
Bovinos/genética , Homocigoto , Endogamia , Selección Genética , Animales , Femenino , Frecuencia de los Genes , Genoma , Masculino , América del Norte , Linaje , Polimorfismo de Nucleótido Simple , Dinámica Poblacional
2.
Front Genet ; 14: 1082782, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323679

RESUMEN

The arrangement of markers on the genome can be defined in either physical or linkage terms. While a physical map represents the inter-marker distances in base pairs, a genetic (or linkage) map pictures the recombination rate between pairs of markers. High-resolution genetic maps are key elements for genomic research, such as fine-mapping of quantitative trait loci, but they are also needed for creating and updating chromosome-level assemblies of whole-genome sequences. Based on published results on a large pedigree of German Holstein cattle and newly obtained results with German/Austrian Fleckvieh cattle, we aim at providing a platform that allows users to interactively explore the bovine genetic and physical map. We developed the R Shiny app CLARITY available online at https://nmelzer.shinyapps.io/clarity and as R package at https://github.com/nmelzer/CLARITY that provides access to the genetic maps built on the Illumina Bovine SNP50 genotyping array with markers ordered according to the physical coordinates of the most recent bovine genome assembly ARS-UCD1.2. The user is able to interconnect the physical and genetic map for a whole chromosome or a specific chromosomal region and can inspect a landscape of recombination hotspots. Moreover, the user can investigate which of the frequently used genetic-map functions locally fits best. We further provide auxiliary information about markers being putatively misplaced in the ARS-UCD1.2 release. The corresponding output tables and figures can be downloaded in various formats. By ongoing data integration from different breeds, the app also facilitates comparison of different genome features, providing a valuable tool for education and research purposes.

3.
BMC Genet ; 12: 74, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21867519

RESUMEN

BACKGROUND: Molecular marker information is a common source to draw inferences about the relationship between genetic and phenotypic variation. Genetic effects are often modelled as additively acting marker allele effects. The true mode of biological action can, of course, be different from this plain assumption. One possibility to better understand the genetic architecture of complex traits is to include intra-locus (dominance) and inter-locus (epistasis) interaction of alleles as well as the additive genetic effects when fitting a model to a trait. Several Bayesian MCMC approaches exist for the genome-wide estimation of genetic effects with high accuracy of genetic value prediction. Including pairwise interaction for thousands of loci would probably go beyond the scope of such a sampling algorithm because then millions of effects are to be estimated simultaneously leading to months of computation time. Alternative solving strategies are required when epistasis is studied. METHODS: We extended a fast Bayesian method (fBayesB), which was previously proposed for a purely additive model, to include non-additive effects. The fBayesB approach was used to estimate genetic effects on the basis of simulated datasets. Different scenarios were simulated to study the loss of accuracy of prediction, if epistatic effects were not simulated but modelled and vice versa. RESULTS: If 23 QTL were simulated to cause additive and dominance effects, both fBayesB and a conventional MCMC sampler BayesB yielded similar results in terms of accuracy of genetic value prediction and bias of variance component estimation based on a model including additive and dominance effects. Applying fBayesB to data with epistasis, accuracy could be improved by 5% when all pairwise interactions were modelled as well. The accuracy decreased more than 20% if genetic variation was spread over 230 QTL. In this scenario, accuracy based on modelling only additive and dominance effects was generally superior to that of the complex model including epistatic effects. CONCLUSIONS: This simulation study showed that the fBayesB approach is convenient for genetic value prediction. Jointly estimating additive and non-additive effects (especially dominance) has reasonable impact on the accuracy of prediction and the proportion of genetic variation assigned to the additive genetic source.


Asunto(s)
Teorema de Bayes , Marcadores Genéticos , Variación Genética , Modelos Estadísticos , Fenotipo , Sitios de Carácter Cuantitativo
4.
PLoS One ; 13(10): e0204619, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30273367

RESUMEN

Recent research suggests that personality, defined as consistent individual behavioral variation, in farm animals could be an important factor when considering their health, welfare, and productivity. However, behavioral tests are often performed individually and they might not reflect the behavioral differences manifested in every-day social environments. Furthermore, the contextual and longer-term temporal stability of personality traits have rarely been investigated in adult dairy cattle. In this study, we tested three groups of lactating Holstein cows (40 cows) using an individual arena test and a novel object test in groups to measure the contextual stability of behavior. Among the recorded individual test parameters, we used seven in the final analysis, which were determined by a systematic parameter reduction procedure. We found positive correlations between novel object contact duration in the group test and individual test parameters object contact duration (Rs = 0.361, P = 0.026) and movement duration (Rs = 0.336, P = 0.039). Both tests were repeated 6 months later to investigate their temporal stability whereby four individual test parameters were repeatable. There was no consistency in the group test results for 25 cows tested twice, possibly due to group composition changes. Furthermore, based on the seven individual test parameters, two personality traits (activity/exploration and boldness) were identified by principal component analysis. We found a positive association between the first and second tests for activity/exploration (Rs = 0.334, P = 0.058) and for boldness (Rs = 0.491, P = 0.004). Our results support the multidimensional nature of personality in adult dairy cattle and they indicate a link between behavior in individual and within-group situations. The lack of stability according to the group test results implies that group companions might have a stronger influence on individual behavior than expected. We suggest repeating the within-group behavioral measurements to study the relationship between the social environment and the manifestation of personality traits in every-day situations.


Asunto(s)
Conducta Animal , Industria Lechera , Animales , Bovinos , Femenino , Personalidad , Factores de Tiempo
5.
Front Psychol ; 9: 2099, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459682

RESUMEN

Delay-of-gratification paradigms, such as the famous "Marshmallow Test," are designed to investigate the complex cognitive concepts of self-control and impulse control in humans and animals. Such tests determine whether a subject will demonstrate impulse control by choosing a large, delayed reward over an immediate, but smaller reward. Documented relationships between impulsive behavior and aggression in humans and animals suggest important implications for farm animal husbandry and welfare, especially in terms of inadequate social behavior, tail biting and maternal behavior. In a preliminary study, we investigated whether the extent of impulse control would differ between quantitatively and qualitatively different aspects of reward in pigs. Twenty female piglets were randomly divided into two groups, with 10 piglets each. After a preference test to determine individual reward preference among six different food items, a discrimination test was conducted to train for successful discrimination between different amounts of reward (one piece vs. four pieces) and different qualitative aspects of reward (highly preferred vs. least preferred food item). Then, an increasing delay (2, 4, 8, 16, 24, 32 s) was introduced for the larger/highly preferred reward. Each piglet could choose to get the smaller/least preferred reward immediately or to wait for the larger/highly preferred reward. Piglets showed clear differences in their preference for food items. Moreover, the "quality group" displayed faster learning in the discrimination test (number of sessions until 90% of the animals completed the discrimination test: "quality group"-3 days vs. "quantity group"-5 days) and reached a higher level of impulse control in the delay-of-gratification test compared to the "quantity group" (maximum delay that was mastered: "quality group"-24 s vs. "quantity group"-8 s). These results demonstrate that impulse control is present in piglets but that the opportunity to get a highly preferred reward is more valued than the opportunity to get more of a given reward. This outcome also underlines the crucial role of motivation in cognitive test paradigms. Further investigations will examine whether impulse control is related to traits that are relevant to animal husbandry and welfare.

6.
PLoS One ; 8(8): e70256, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990900

RESUMEN

In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single nucleotide polymorphisms (SNPs) enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach). To enable a comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known quantitative trait loci (QTL) were determined. This enabled us to determine if detected important SNP subsets were enriched in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the total amount of (40,317) SNPs., significantly more important SNPs in known QTL regions were detected using our approach compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-phenotype).


Asunto(s)
Bovinos/genética , Leche/química , Polimorfismo de Nucleótido Simple , Animales , Industria Lechera , Femenino , Estudios de Asociación Genética , Genotipo , Metaboloma , Metabolómica , Sitios de Carácter Cuantitativo , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda