Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Exp Parasitol ; 216: 107932, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32535113

RESUMEN

Neglected tropical diseases, such as Chagas disease caused by the protozoa Trypanosoma cruzi, affect millions of people worldwide but lack effective treatments that are accessible to the entire population, especially patients with the debilitating chronic phase. The recognition of host cells, invasion and its intracellular replicative success are essential stages for progression of the parasite life cycle and the development of Chagas disease. It is predicted that programmed cell death pathways (apoptosis) would be activated in infected cells, either via autocrine secretion or mediated by cytotoxic immune cells. This process should play a key role in resolving infections by hindering the evolutionary success of the parasite. In this research, we performed assays to investigate the role of the lectin galectin-3 (Gal3) in parasite-host signaling pathways. Using cells with endogenous levels of Gal3 compared to Gal3-deficient cells (induced by RNA interference), we demonstrated that T. cruzi mediated the survival pathways and the subverted apoptosis through Gal3 promoting a pro-survival state in infected cells. Infected Gal3-depleted cells showed increased activation of caspase 3 and pro-apoptotic targets, such as poly (ADP-ribose) polymerase (PARP), and lower accumulation of anti-apoptotic proteins, such as c-IAP1, survivin and XIAP. During the early stages of infection, Gal3 translocates from the cytoplasm to the nucleus and must act in survival pathways. In a murine model of experimental infection, Gal3 knockout macrophages showed lower infectivity and viability. In vivo infection revealed a lower parasitemia and longer survival and an increased spleen cellularity in Gal3 knockout mice with consequences on the percentage of T lymphocytes (CD4+ CD11b+) and macrophages. In addition, cytokines such as IL-2, IL-4, IL-6 and TNF-α are increased in Gal3 knockout mice when compared to wild type genotype. These data demonstrate a Gal3-mediated complex interplay in the host cell, keeping infected cells alive long enough for infection and intracellular proliferation of new parasites. However, a continuous knowledge of these signaling pathways should contribute to a better understanding the mechanisms of cell death subversion that are promoted by protozoans in the pathophysiology of neglected diseases such as Chagas disease.


Asunto(s)
Apoptosis/fisiología , Enfermedad de Chagas/parasitología , Galectina 3/fisiología , Trypanosoma cruzi/fisiología , Análisis de Varianza , Animales , Western Blotting , Caspasa 3/análisis , Supervivencia Celular , Enfermedad de Chagas/mortalidad , Chlorocebus aethiops , Colorimetría , Citocinas/sangre , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Galectina 3/análisis , Galectina 3/genética , Células HeLa , Humanos , Inmunofenotipificación , Macrófagos Peritoneales/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Parasitemia/mortalidad , Parasitemia/parasitología , Fenotipo , Bazo/patología , Células Vero
2.
Int J Mol Sci ; 20(20)2019 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614718

RESUMEN

Drug resistance represents a major issue in treating breast cancer, despite the identification of novel therapeutic strategies, biomarkers, and subgroups. We have previously identified the LQB-223, 11a-N-Tosyl-5-deoxi-pterocarpan, as a promising compound in sensitizing doxorubicin-resistant breast cancer cells, with little toxicity to non-neoplastic cells. Here, we investigated the mechanisms underlying LQB-223 antitumor effects in 2D and 3D models of breast cancer. MCF-7 and MDA-MB-231 cells had migration and motility profile assessed by wound-healing and phagokinetic track motility assays, respectively. Cytotoxicity in 3D conformation was evaluated by measuring spheroid size and performing acid phosphatase and gelatin migration assays. Protein expression was analyzed by immunoblotting. Our results show that LQB-223, but not doxorubicin treatment, suppressed the migratory and motility capacity of breast cancer cells. In 3D conformation, LQB-223 remarkably decreased cell viability, as well as reduced 3D culture size and migration. Mechanistically, LQB-223-mediated anticancer effects involved decreased proteins levels of XIAP, c-IAP1, and Mcl-1 chemoresistance-related proteins, but not survivin. Survivin knockdown partially potentiated LQB-223-induced cytotoxicity. Additionally, cell treatment with LQB-223 resulted in changes in the mRNA levels of epithelial-mesenchymal transition markers, suggesting that it might modulate cell plasticity. Our data demonstrate that LQB-223 impairs 3D culture growth and migration in 2D and 3D models of breast cancer exhibiting different phenotypes.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Pterocarpanos/farmacología , Antineoplásicos/toxicidad , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Células MCF-7 , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Pterocarpanos/toxicidad , Esferoides Celulares/efectos de los fármacos , Survivin/genética , Survivin/metabolismo , Células Tumorales Cultivadas , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
3.
PLoS Med ; 14(7): e1002310, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28678794

RESUMEN

BACKGROUND: Early revascularization of ischemic organs is key to improving outcomes, yet consequent reperfusion injury may be harmful. Reperfusion injury is largely attributed to excess mitochondrial production of reactive oxygen species (ROS). Sulfide inhibits mitochondria and reduces ROS production. Ammonium tetrathiomolybdate (ATTM), a copper chelator, releases sulfide in a controlled and novel manner, and may offer potential therapeutic utility. METHODS AND FINDINGS: In vitro, ATTM releases sulfide in a time-, pH-, temperature-, and thiol-dependent manner. Controlled sulfide release from ATTM reduces metabolism (measured as oxygen consumption) both in vivo in awake rats and ex vivo in skeletal muscle tissue, with a superior safety profile compared to standard sulfide generators. Given intravenously at reperfusion/resuscitation to rats, ATTM significantly reduced infarct size following either myocardial or cerebral ischemia, and conferred survival benefit following severe hemorrhage. Mechanistic studies (in vitro anoxia/reoxygenation) demonstrated a mitochondrial site of action (decreased MitoSOX fluorescence), where the majority of damaging ROS is produced. CONCLUSIONS: The inorganic thiometallate ATTM represents a new class of sulfide-releasing drugs. Our findings provide impetus for further investigation of this compound as a novel adjunct therapy for reperfusion injury.


Asunto(s)
Quelantes/farmacología , Molibdeno/farmacología , Daño por Reperfusión/tratamiento farmacológico , Animales , Masculino , Ratas , Ratas Wistar
4.
Muscle Nerve ; 53(1): 91-5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25965940

RESUMEN

INTRODUCTION: Duchenne muscular dystrophy (DMD) is a degenerative disease of skeletal, respiratory, and cardiac muscles caused by defects in the dystrophin gene. More recently, brain involvement has been verified. Mitochondrial dysfunction and oxidative stress may underlie the pathophysiology of DMD. In this study we evaluate Krebs cycle enzymes activity in the cerebral cortex, diaphragm, and quadriceps muscles of mdx mice. METHODS: Cortex, diaphragm, and quadriceps tissues from male dystrophic mdx and control mice were used. RESULTS: We observed increased malate dehydrogenase activity in the cortex; increased malate dehydrogenase and succinate dehydrogenase activities in the diaphragm; and increased citrate synthase, isocitrate dehydrogenase, and malate dehydrogenase activities in the quadriceps of mdx mice. CONCLUSION: This study showed increased activity of Krebs cycle enzymes in cortex, quadriceps, and diaphragm in mdx mice.


Asunto(s)
Citrato (si)-Sintasa/metabolismo , Ciclo del Ácido Cítrico/fisiología , Isocitrato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/metabolismo , Distrofia Muscular de Duchenne/enzimología , Animales , Corteza Cerebral/enzimología , Diafragma/enzimología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/enzimología , Distrofia Muscular de Duchenne/genética
5.
Brain Behav Immun ; 43: 54-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25019583

RESUMEN

Oxidative stress and inflammation is likely to be a major step in the development of sepsis-associated encephalopathy (SAE) and long-term cognitive impairment. To date, it is not known whether brain inflammation and oxidative damage are a direct consequence of systemic inflammation or whether these events are driven by brain resident cells, such as microglia. Therefore, the aim of this study is to evaluate the effect of minocycline on behavioral and neuroinflammatory parameters in rats submitted to sepsis. Male Wistar rats were subjected to sepsis by cecal ligation and puncture (CLP). The animals were divided into sham-operated (Sham+control), sham-operated plus minocycline (sham+MIN), CLP (CLP+control) and CLP plus minocycline (CLP+MIN) (100 µg/kg, administered as a single intracerebroventricular (ICV) injection). Some animals were killed 24h after surgery to assess the breakdown of the blood brain barrier, cytokine levels, oxidative damage to lipids (TBARS) and proteins in the hippocampus. Some animals were allowed to recover for 10 days when step-down inhibitory avoidance and open-field tasks were performed. Treatment with minocycline prevented an increase in markers of oxidative damage and inflammation in the hippocampus after sepsis. This was associated with an improvement in long-term cognitive performance. In conclusion, we demonstrated that the inhibition of the microglia by an ICV injection of minocycline was able to decrease acute brain oxidative damage and inflammation as well as long-term cognitive impairment in sepsis survivors.


Asunto(s)
Encéfalo/metabolismo , Trastornos del Conocimiento/etiología , Inflamación/metabolismo , Microglía/metabolismo , Sepsis/complicaciones , Animales , Reacción de Prevención/fisiología , Trastornos del Conocimiento/metabolismo , Citocinas/sangre , Hipocampo/metabolismo , Masculino , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Sepsis/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
6.
Synapse ; 67(11): 786-93, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23740866

RESUMEN

Central nervous system (CNS) dysfunction secondary to sepsis is characterized by long-term cognitive impairment. It was observed that oxidative damage, energetic metabolism impairment, and cytokine level alteration seen in early times in an animal model of sepsis may persist for up to 10 days and might be associated with cognitive damage. In order to understand these mechanisms, at least in part, we evaluated the effects of sepsis on cytokine levels in the cerebrospinal fluid (CSF), oxidative parameters, and energetic metabolism in the brain of rats at both 30 and 60 days after sepsis induction by cecal ligation and perforation (CLP). To this aim, male Wistar rats underwent CLP with "basic support" or were sham-operated. Both 30 and 60 days after surgery, the CSF was collected and the animals were killed by decapitation. Then, the prefrontal cortex, hippocampus, striatum, and cortex were collected. Thirty days after surgery, an increase of IL-6 level in the CSF; an increase in the thiobarbituric acid-reactive species (TBARS) in prefrontal cortex and a decrease in hippocampus, striatum, and cortex; a decrease of carbonyl protein formation only in prefrontal cortex and an increase in striatum; and an increase in the complex IV activity only in hippocampus were observed. Sixty days after sepsis, an increase of TNF-α level in the CSF; a decrease of TBARS only in hippocampus; an increase of carbonyl protein formation in striatum; and a decrease of complex I activity in prefrontal cortex, hippocampus, and striatum were observed. These findings may contribute to understanding the role of late cognitive impairment. Further studies may address how these findings interact during sepsis development and contribute to CNS dysfunction.


Asunto(s)
Encéfalo/metabolismo , Sepsis/metabolismo , Animales , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Interleucina-6/líquido cefalorraquídeo , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factor de Necrosis Tumoral alfa/líquido cefalorraquídeo
7.
Genet Mol Biol ; 36(3): 347-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24130441

RESUMEN

The family Prochilodontidae is considered a group with well conserved chromosomes characterized by their number, morphology and banding patterns. Thence, our study aimed at accomplishing a cytogenetic analysis with conventional methods (Giemsa staining, silver staining of the nucleolus organizer regions-AgNOR, and C-banding) and fluorescence in situ hybridization (FISH) with 18S and 5S ribosomal DNA probes in five species of the Prochilodus genus (Prochilodus argenteus, Prochilodus brevis, Prochilodus costatus, Prochilodus lineatus and Prochilodus nigricans) collected from different Brazilian hydrographic basins. The results revealed conservatism in chromosome number, morphology, AgNORs 18S and 5S rDNAs location and constitutive heterochromatin distribution patterns. The minor differences observed in this work, such as an Ag-NOR on a P. argenteus chromosome and a distinct C-banding pattern in P. lineatus, are not sufficient to question the conservatism described for this group. Future work using repetitive DNA sequences as probes for FISH will be interesting to further test the cytogenetic conservatism in Prochilodus.

8.
Food Res Int ; 173(Pt 1): 113291, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803604

RESUMEN

Enteric endothelial cells are the first structure to come in contact with digested food and may suffer oxidative damage by innumerous exogenous factors. Although peptides derived from whey digestion have presented antioxidant potential, little is known regarding antioxidant pathways activation in Caco-2 cell line model. Hence, we evaluated the ability to form whey peptides resistant to simulated gastrointestinal digestive processes, with potential antioxidant activity on gastrointestinal cells and associated with sequence structure and activity. Using the INFOGEST method of simulated static digestion, we achieved 35.2% proteolysis, with formation of peptides of low molecular mass (<600 Da) evaluated by FPLC. The digestion-resistant peptides showed a high proportion of hydrophobic and acidic amino acids, but with average surface hydrophobicity. We identified 24 peptide sequences, mainly originated from ß-lactoglobulin, that exhibit various bioactivities. Structurally, the sequenced peptides predominantly contained the amino acids lysine and valine in the N-terminal region, and tyrosine in the C-terminal region, which are known to exhibit antioxidant properties. The antioxidant activity of the peptide digests was on average twice as potent as that of the protein isolates for the same concentration, as evaluated by ABTS, DPPH and ORAC. Evaluation of biological activity in Caco-2 intestinal cells, stimulated with hydrogen peroxide, showed that they attenuated the production of reactive oxygen species and prevented GSH reduction and SOD activity increase. Caco-2 cells were not responsive to nitric oxide secretion. This study suggests that whey peptides formed during gastric digestion exhibit biological antioxidant activity, without the need for previously hydrolysis with exogenous enzymes for supplement application. The study's primary contribution was demonstrating the antioxidant activity of whey peptides in maintaining the gastrointestinal epithelial cells, potentially preventing oxidative stress that affects the digestive system.


Asunto(s)
Antioxidantes , Suero Lácteo , Humanos , Antioxidantes/química , Células CACO-2 , Suero Lácteo/metabolismo , Células Endoteliales/metabolismo , Proteína de Suero de Leche/química , Péptidos/química , Digestión
9.
Toxins (Basel) ; 15(11)2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999511

RESUMEN

Snakebite envenoming is one of the most significantly neglected tropical diseases in the world. The lack of diagnosis/prognosis methods for snakebite is one of our motivations to develop innovative technological solutions for Brazilian health. The objective of this work was to evaluate the protein and metallic ion composition of Crotalus durissus terrificus, Bothrops jararaca, B. alternatus, B. jararacussu, B. moojeni, B. pauloensis, and Lachesis muta muta snake venoms. Brazilian snake venoms were subjected to the shotgun proteomic approach using mass spectrometry, and metal ion analysis was performed by atomic spectrometry. Shotgun proteomics has shown three abundant toxin classes (PLA2, serine proteases, and metalloproteinases) in all snake venoms, and metallic ions analysis has evidenced that the Cu2+ ion is present exclusively in the L. m. muta venom; Ca2+ and Mg2+ ions have shown a statistical difference between the species of Bothrops and Crotalus genus, whereas the Zn2+ ion presented a statistical difference among all species studied in this work. In addition, Mg2+ ions have shown 42 times more in the C. d. terrificus venom when compared to the average concentration in the other genera. Though metal ions are a minor fraction of snake venoms, several venom toxins depend on them. We believe that these non-protein fractions are capable of assisting in the development of unprecedented diagnostic devices for Brazilian snakebites.


Asunto(s)
Bothrops , Venenos de Crotálidos , Mordeduras de Serpientes , Animales , Mordeduras de Serpientes/diagnóstico , Brasil , Proteómica , Venenos de Serpiente , Iones , Venenos de Crotálidos/química
10.
Chemosphere ; 316: 137779, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36632955

RESUMEN

Exposure to mercury can interfere with the expression of proteins and enzymes, compromise important pathways, such as apoptosis and glucose metabolism, and even induce the expression of metallothioneins. In this study, analytical techniques were used to determine the concentration of total mercury (THg) in muscle and liver tissue, protein pellets, and spots [using graphite furnace atomic absorption spectrometry (GFAAS)], and molecular techniques were used to identify metalloproteins present in mercury-associated protein spots. Thirty individuals from three different fish species, Cichla sp. (n = 10), Brachyplatystoma filamentosum (n = 10), and Semaprochilodus sp. (n = 10) from the Brazilian Amazon were used. Oxidative stress indicators [such as glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD), a marker of lipid peroxidation (LPO)] and the possible expression of metallothioneins in muscle and liver tissues were investigated. The two piscivorous species, Cichla sp. and B. filamentosum, presented the highest concentrations of mercury in their hepatic tissue, 1219 ± 15.00 and 1044 ± 13.6 µg kg-1, respectively, and in their muscle tissue, 101 ± 1.30 µg kg-1 and 87.4 ± 0.900 µg kg-1, respectively. The non-carnivorous species Semaprochilodus sp. had comparatively low concentrations of mercury in both its hepatic (852 ± 11.1 µg kg-1) and muscle (71.4 ± 0.930 µg kg-1) tissues. The presence of mercury was identified in 24 protein spots using GFAAS; concentrations ranged from 11.5 to 787 µg kg-1, and mass spectrometry identified 21 metal-binding proteins. The activities of GSH-Px, CAT, and SOD, related to oxidative stress, decreased proportionally as tissue Hg concentrations increased, while the levels of LPO markers increased, indicating the presence of stress. Our study results demonstrate possible mercury interference in oxidative stress markers (GSH-Px, CAT, SOD, and LPO), in addition to the identification of 21 metal-binding proteins as possible biomarkers of mercury exposure in fish.


Asunto(s)
Characiformes , Cíclidos , Mercurio , Animales , Peces/metabolismo , Mercurio/análisis , Characiformes/metabolismo , Músculos/química , Cíclidos/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa/metabolismo , Biomarcadores/metabolismo , Estrés Oxidativo , Hígado/metabolismo
11.
Toxins (Basel) ; 15(11)2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37999488

RESUMEN

L-Amino acid oxidase (LAAO) is an enzyme found in snake venom that has multifaceted effects, including the generation of hydrogen peroxide (H2O2) during oxidative reactions, leading to various biological and pharmacological outcomes such as apoptosis, cytotoxicity, modulation of platelet aggregation, hemorrhage, and neutrophil activation. Human neutrophils respond to LAAO by enhancing chemotaxis, and phagocytosis, and releasing reactive oxygen species (ROS) and pro-inflammatory mediators. Exosomes cellular nanovesicles play vital roles in intercellular communication, including immune responses. This study investigates the impact of Calloselasma rhodostoma snake venom-derived LAAO (Cr-LAAO) on human neutrophil exosome release, including activation patterns, exosome formation, and content. Neutrophils isolated from healthy donors were stimulated with Cr-LAAO (100 µg/mL) for 3 h, followed by exosome isolation and analysis. Results show that Cr-LAAO induces the release of exosomes with distinct protein content compared to the negative control. Proteomic analysis reveals proteins related to the regulation of immune responses and blood coagulation. This study uncovers Cr-LAAO's ability to activate human neutrophils, leading to exosome release and facilitating intercellular communication, offering insights into potential therapeutic approaches for inflammatory and immunological disorders.


Asunto(s)
Exosomas , L-Aminoácido Oxidasa , Humanos , L-Aminoácido Oxidasa/farmacología , L-Aminoácido Oxidasa/metabolismo , Neutrófilos , Exosomas/metabolismo , Peróxido de Hidrógeno/farmacología , Proteómica , Venenos de Serpiente
12.
Int J Oncol ; 58(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33786613

RESUMEN

Acute myeloid leukemia (AML) is a complex hematological disorder characterized by blockage of differentiation and high proliferation rates of myeloid progenitors. Anthracycline and cytarabine­based therapy has remained the standard treatment for AML over the last four decades. Although this treatment strategy has increased survival rates, patients often develop resistance to these drugs. Despite efforts to understand the mechanisms underlying cytarabine resistance, there have been few advances in the field. The present study developed an in vitro AML cell line model resistant to cytarabine (HL­60R), and identified chromosomal aberrations by karyotype evaluation and potential molecular mechanisms underlying chemoresistance. Cytarabine decreased cell viability, as determined by MTT assay, and induced cell death and cell cycle arrest in the parental HL­60 cell line, as revealed by Annexin V/propidium iodide (PI) staining and PI DNA incorporation, respectively, whereas no change was observed in the HL­60R cell line. In addition, the HL­60R cell line exhibited a higher tumorigenic capacity in vivo compared with the parental cell line. Notably, no reduction in tumor volume was detected in mice treated with cytarabine and inoculated with HL­60R cells. In addition, western blotting revealed that the protein expression levels of Bcl­2, X­linked inhibitor of apoptosis protein (XIAP) and c­Myc were upregulated in HL­60R cells compared with those in HL­60 cells, along with predominant nuclear localization of the p50 and p65 subunits of NF­κB in HL­60R cells. Furthermore, the antitumor effect of LQB­118 pterocarpanquinone was investigated; this compound induced apoptosis, a reduction in cell viability and a decrease in XIAP expression in cytarabine­resistant cells. Taken together, these data indicated that acquired cytarabine resistance in AML was a multifactorial process, involving chromosomal aberrations, and differential expression of apoptosis and cell proliferation signaling pathways. Furthermore, LQB­118 could be a potential alternative therapeutic approach to treat cytarabine­resistant leukemia cells.


Asunto(s)
Aberraciones Cromosómicas , Leucemia Mieloide Aguda/tratamiento farmacológico , Naftoquinonas/farmacología , Pterocarpanos/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Citarabina/uso terapéutico , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Naftoquinonas/uso terapéutico , Pterocarpanos/uso terapéutico , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Front Immunol ; 12: 653151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841437

RESUMEN

We evaluated the safety, optimal dose, and preliminary effectiveness of a new-approach Africanized honeybee (Apis mellifera) Antivenom (AAV) in a phase I/II, multicenter, non-randomized, single-arm clinical trial involving 20 participants with multiple stings. Participants received 2 to 10 vials of AAV depending on the number of stings they suffered, or a predefined adjuvant, symptomatic, and complementary treatment. The primary safety endpoint was the occurrence of early adverse reactions within the first 24 h of treatment. Preliminary efficacy based on clinical evolution, including laboratory findings, was assessed at baseline and at various time points over the four following weeks. ELISA assays and mass spectrometry were used to estimate venom pharmacokinetics before, during, and after treatment. Twenty adult participants, i.e., 13 (65%) men and 7 (35%) women, with a median age of 44 years and a mean body surface area of 1.92 m2 (median = 1.93 m2) were recruited. The number of stings ranged from 7 to > 2,000, with a median of 52.5. Symptoms of envenoming were classified as mild, moderate, or severe in 80% (16), 15% (3), and 5% (1) of patients, respectively; patients with mild, moderate, or severe envenoming received 2, 6, and 10 vials of AAV as per the protocol. None of the patients had late reactions (serum sickness) within 30 d of treatment. There was no discontinuation of the protocol due to adverse events, and there were no serious adverse events. One patient had a moderate adverse event, transient itchy skin, and erythroderma. All participants completed the intravenous antivenom infusion within 2 h, and there was no loss to follow-up after discharge. ELISA assays showed venom (melittin and PLA2) concentrations varying between 0.25 and 1.479 ng/mL prior to treatment. Venom levels decreased in all patients during the hospitalization period. Surprisingly, in nine cases (45%), despite clinical recovery and the absence of symptoms, venom levels increased again during outpatient care 10 d after discharge. Mass spectrometry showed melittin in eight participants, 30 d after treatment. Considering the promising safety results for this investigational product in the treatment of massive Africanized honeybee attack, and its efficacy, reflected in the clinical improvements and corresponding immediate decrease in blood venom levels, the AAV has shown to be safe for human use. Clinical Trial Registration: UTN: U1111-1160-7011, identifier [RBR-3fthf8].


Asunto(s)
Antivenenos/administración & dosificación , Venenos de Abeja/antagonistas & inhibidores , Abejas/inmunología , Mordeduras y Picaduras de Insectos/terapia , Adulto , Anciano , Animales , Antivenenos/efectos adversos , Venenos de Abeja/sangre , Brasil , Femenino , Humanos , Mordeduras y Picaduras de Insectos/sangre , Mordeduras y Picaduras de Insectos/diagnóstico , Mordeduras y Picaduras de Insectos/inmunología , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Adulto Joven
14.
Biol Trace Elem Res ; 199(2): 712-720, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32449008

RESUMEN

This manuscript describes the results of a metalloproteomic study of mercury in samples of muscle and liver tissue of the species Serrasalmus rhombeus, popularly known as black piranha and characterised as the most voracious and aggressive predator in the Brazilian Amazon. The metalloproteomic study involved using two-dimensional electrophoresis (2D PAGE) to fractionate the proteome of the muscle and liver tissue samples, along with atomic absorption spectrometry in a graphite furnace (GFAAS) to identify mercury associated with protein SPOTs and mass spectrometry with electrospray ionisation (ESI-MS/MS) to characterise the mercury-binding proteins. The protein SPOTs characterised showed concentrations in the order of 156 mg kg-1, which ranks as the highest concentrations of mercury determined so far in metalloproteomic studies involving fish species in the Amazon region. Based on FASTA sequences of proteins characterised by ESI-MS/MS, bioinformatics studies were performed that allowed identifying nine proteins with characteristics of biomarkers of mercury exposure. Of those proteins, glutathione peroxidase stands out as an enzyme of great importance in the antioxidant defence of organisms subjected to oxidative stress caused by xenobiotics.


Asunto(s)
Characiformes , Mercurio , Animales , Biomarcadores , Brasil , Mercurio/análisis , Espectrometría de Masas en Tándem
15.
J Neurosci Res ; 88(6): 1329-37, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19998488

RESUMEN

Traumatic brain injury (TBI) causes impairment of fine motor functions in humans and nonhuman mammals that often persists for months after the injury occurs. Neuroprotective strategies for prevention of the sequelae of TBI and understanding the molecular mechanisms and cellular pathways are related to the glutamatergic system. It has been suggested that cellular damage subsequent to TBI is mediated by the excitatory neurotransmitters, glutamate and aspartate, through the excessive activation of the N-methyl-D-aspartate (NMDA) receptors. Thus, preconditioning with a low dose of NMDA was used as a strategy for protection against locomotor deficits observed after TBI in mice. Male adult mice CF-1 were preconditioned with NMDA (75 mg/kg) 24 hr before the TBI induction. Under anesthesia with O(2)/N(2)O (33%: 66%) inhalation, the animals were subjected to the experimental model of trauma that occurs by the impact of a 25 g weight on the skull. Sensorimotor gating was evaluated at 1.5, 6, or 24 hr after TBI induction by using footprint and rotarod tests. Cellular damage also was assessed 24 hr after occurrence of cortical trauma. Mice preconditioned with NMDA were protected against all motor deficits revealed by footprint tests, but not those observed in rotarod tasks. Although mice showed motor deficits after TBI, no cellular damage was observed. These data corroborate the hypothesis that glutamatergic excitotoxicity, especially via NMDA receptors, contributes to severity of trauma. They also point to a putative neuroprotective mechanism induced by a sublethal dose of NMDA to improve motor behavioral deficits after TBI.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Discinesias/tratamiento farmacológico , N-Metilaspartato/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Animales , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Recuento de Células , Cerebelo/efectos de los fármacos , Cerebelo/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Fragmentación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Discinesias/etiología , Discinesias/patología , Masculino , Ratones , Actividad Motora/efectos de los fármacos , N-Metilaspartato/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Equilibrio Postural/efectos de los fármacos , Índice de Severidad de la Enfermedad , Factores de Tiempo , Resultado del Tratamiento
16.
Intensive Care Med Exp ; 8(1): 13, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32274608

RESUMEN

BACKGROUND: Several therapeutic strategies to rescue the brain from ischemic injury have improved outcomes after stroke; however, there is no treatment as yet for reperfusion injury, the secondary damage caused by necessary revascularization. Recently we characterized ammonium tetrathiomolybdate (ATTM), a drug used as a copper chelator over many decades in humans, as a new class of sulfide donor that shows efficacy in preclinical injury models. We hypothesized that ATTM could confer neuroprotection in a relevant rodent model of regional stroke. METHODS AND RESULTS: Brain ischemia was induced by transient (90-min) middle cerebral artery occlusion (tMCAO) in anesthetized Wistar rats. To mimic a clinical scenario, ATTM (or saline) was administered intravenously just prior to reperfusion. At 24 h or 7 days post-reperfusion, rats were assessed using functional (rotarod test, spontaneous locomotor activity), histological (infarct size), and molecular (anti-oxidant enzyme capacity, oxidative damage, and inflammation) outcome measurements. ATTM-treated animals showed improved functional activity at both 24 h and 7-days post-reperfusion, in parallel with a significant reduction in infarct size. These effects were additionally associated with increased brain antioxidant enzyme capacity, decreased oxidative damage, and a late (7-day) effect on pro-inflammatory cytokine levels and nitric oxide products. CONCLUSION: ATTM confers significant neuroprotection that, along with its known safety profile in humans, provides encouragement for its development as a novel adjunct therapy for revascularization following stroke.

17.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118761, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32485270

RESUMEN

Evasion from apoptosis is one of the hallmarks of cancer. X-linked inhibitor of apoptosis protein (XIAP) is known to modulate apoptosis by inhibiting caspases and ubiquitinating target proteins. XIAP is mainly found at the cytoplasm, but recent data link nuclear XIAP to poor prognosis in breast cancer. Here, we generated a mutant form of XIAP with a nuclear localization signal (XIAPNLS-C-term) and investigated the oncogenic mechanisms associated with nuclear XIAP in breast cancer. Our results show that cells overexpressing XIAPΔRING (RING deletion) and XIAPNLS-C-term exhibited XIAP nuclear localization more abundantly than XIAPwild-type. Remarkably, overexpression of XIAPNLS-C-term, but not XIAPΔRING, conferred resistance to doxorubicin and increased cellular proliferative capacity. Interestingly, Survivin and c-IAP1 expression were not associated with XIAP oncogenic effects. However, NFκB expression and ubiquitination of K63, but not K48 chains, were increased following XIAPNLS-C-term overexpression, pointing to nuclear signaling transduction. Consistently, multivariate analysis revealed nuclear, but not cytoplasmic XIAP, as an independent prognostic factor in hormone receptor-negative breast cancer patients. Altogether, our findings suggest that nuclear XIAP confers poor outcome and RING-associated breast cancer growth and chemoresistance.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Núcleo Celular/metabolismo , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patología , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Lisina/metabolismo , Análisis Multivariante , Proteínas Mutantes/metabolismo , Mutación/genética , FN-kappa B/metabolismo , Poliubiquitina/metabolismo , Pronóstico , Dominios Proteicos , Receptores de Superficie Celular/metabolismo , Análisis de Supervivencia , Ubiquitinación/efectos de los fármacos , Proteína Inhibidora de la Apoptosis Ligada a X/química
18.
Biol Trace Elem Res ; 194(1): 259-272, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31172428

RESUMEN

The development of metallomics techniques has allowed for metallomics analysis of biological systems, enabling a better understanding of the response mechanisms for different stimuli, their relationship to metallic species, and the characterization of biomarkers. In this study, a metallomics analysis of the muscle tissue of Nile tilapia was used to aid the understanding of the molecular mechanisms involved in zinc absorption in this fish species when fed organic and/or inorganic sources of zinc and to identify possible biomarkers for the absorption of this micromineral. To accomplish this, the fish were separated into three groups of 24 g, 74 g, and 85 g initial weights, and each group, respectively, was fed a zinc-free diet (control group, G1), a diet containing zinc found in organic sources (treatment 1, G2), and a diet containing zinc from an inorganic source (treatment 2, G3). Two-dimensional polyacrylamide (2D PAGE) gel electrophoresis was used to separate the proteins of the muscle tissue. Subsequently, the expression profiles of protein spots in the samples where zinc was applied in different concentrations were compared, using the software ImageMaster 2D Platinum version 7.0, to identify proteins that were differentially expressed. The identified proteins were then exposed to atomic absorption spectrometry in a graphite furnace to determine zinc mapping and were subsequently characterized via electrospray ionization tandem mass spectrometry (ESI-MS/MS). The metallomic analysis identified 15 proteins differentially expressed and associated with zinc, leading to the conclusion that three metal-binding proteins presented as possible biomarkers of zinc absorption in fish.


Asunto(s)
Músculos/química , Zinc/análisis , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Peso Corporal , Cíclidos , Proteínas de Peces/análisis , Proteínas de Peces/metabolismo , Músculos/metabolismo , Zinc/administración & dosificación , Zinc/metabolismo
19.
Food Chem ; 309: 125460, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31732251

RESUMEN

The high concentrations of mercury found in Amazon have been intensively studied by the scientific community in the last decades. These mercurial species bind preferentially to proteins. Therefore, this work proposal sought to obtain the fractionation, identification and study of mercury - bound proteins present in samples of muscular and hepatic tissue from fish collected in the reservoir of the Jirau Hydroelectric Power Plant - on the Madeira River. Two-dimensional electrophoresis (2D-PAGE) for protein fractionation, graphite furnace atomic absorption spectrometry (GFAAS) for the quantification of mercury and Mass Spectrometry (ESI-MS/MS) were used for the identification of proteins. Concluding the work with analysis of graphics from the Blast2go program. Two mercury - bound proteins were identified as triosephosphate isomerase A and Protein FAM45A. The data generated by the bioinformatics programs confirm the tendency of these proteins to be linked to mercury and elucity the possibles existing physiological and cellular interactions.


Asunto(s)
Peces , Hígado/química , Mercurio/análisis , Músculo Esquelético/química , Animales , Brasil , Electroforesis en Gel Bidimensional , Ríos/química , Espectrofotometría Atómica , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
20.
Biochem Biophys Rep ; 10: 267-275, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28955754

RESUMEN

MAGE-A10 is a member of the MAGE protein family (melanoma associated antigen) which is overexpressed in cancer cells. Although MAGE-A10 has been characterized for some time and is generally associated to metastasis its function remains unknown. Here we describe experiments using as models oral squamous cell carcinoma (OSCC) cell lines displaying increasing metastatic potential (LN1 and LN2). These cell lines were transduced with lentivirus particles coding for short hairpin against MAGE-A10 mRNA. Repression of MAGE-A10 expression in LN2 cells altered their morphology and impaired growth of LN1 and LN2 cell lines. Furthermore, repression of MAGE-A10 expression increased cell-cell and cell matrix adhesion. Furthermore shMAGEA10 cells were shown to assemble aberrantly on a 3D culture system (microspheroids) when compared to cells transduced with the control scrambled construct. Cell migration was inhibited in knocked down cells as revealed by two different migration assays, wound healing and a phagokinetic track motility assay. In vitro invasion assay using a leiomyoma tissue derived matrix (myogel) showed that shMAGEA10 LN1 and shMAGEA10 LN2 cells displayed a significantly diminished ability to penetrate the matrices. Concomitantly, the expression of E-cadherin, N-cadherin and vimentin genes was analyzed. shMAGEA10 activated the expression of E-cadherin and repression N-cadherin and vimentin transcription. Taken together the results indicate that MAGE-A10 exerts its effects at the level of the epithelial-mesenchymal transition (EMT) presumably by regulating the expression of adhesion molecules.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda