Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Microbiology (Reading) ; 158(Pt 9): 2293-2302, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22745270

RESUMEN

Although arsenic is notoriously poisonous to life, its utilization in therapeutics brings many benefits to human health, so it is therefore essential to discover the molecular mechanisms underlying arsenic stress responses in eukaryotic cells. Aiming to determine the contribution of Ca(2+) signalling pathways to arsenic stress responses, we took advantage of the use of Saccharomyces cerevisiae as a model organism. Here we show that Ca(2+) enhances the tolerance of the wild-type and arsenic-sensitive yap1 strains to arsenic stress in a Crz1-dependent manner, thus providing the first evidence that Ca(2+) signalling cascades are involved in arsenic stress responses. Moreover, our results indicate that arsenic shock elicits a cytosolic Ca(2+) burst in these strains, without the addition of exogenous Ca(2+) sources, strongly supporting the notion that Ca(2+) homeostasis is disrupted by arsenic stress. In response to an arsenite-induced increase of Ca(2+) in the cytosol, Crz1 is dephosphorylated and translocated to the nucleus, and stimulates CDRE-driven expression of the lacZ reporter gene in a Cnb1-dependent manner. The activation of Crz1 by arsenite culminates in the induction of the endogenous genes PMR1, PMC1 and GSC2. Taken together, these data establish that activation of Ca(2+) signalling pathways and the downstream activation of the Crz1 transcription factor contribute to arsenic tolerance in the eukaryotic model organism S. cerevisiae.


Asunto(s)
Arsénico/toxicidad , Calcio/metabolismo , Proteínas de Unión al ADN/biosíntesis , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Factores de Transcripción/biosíntesis , Cationes Bivalentes/metabolismo , Perfilación de la Expresión Génica , Saccharomyces cerevisiae/genética , Activación Transcripcional
2.
Yeast ; 27(5): 245-58, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20148391

RESUMEN

The budding yeast Saccharomyces cerevisiae possesses a very flexible and complex programme of gene expression when exposed to several environmental challenges. Homeostasis is achieved through a highly coordinated mechanism of transcription regulation involving several transcription factors, each one acting singly or in combination to perform specific functions. Here, we review our current knowledge of the function of the Yap transcription factors in stress response. They belong to b-ZIP proteins comprising eight members with specificity at the DNA-binding domain distinct from that of the conventional yeast AP-1 factor, Gcn4. We finish with new insights into the links of transcriptional networks controlling several cellular processes. The data reviewed in this article illustrate how much our comprehension of the biology of Yap family involved in stress response has advanced, and how much research is still needed to unravel the complexity of the role of these transcriptional factors. The complexities of these regulatory interactions, as well as the dynamics of these processes, are important to understand in order to elucidate the control of stress response, a highly conserved process in eukaryotes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Estrés Oxidativo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética
3.
Yeast ; 26(12): 641-53, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19774548

RESUMEN

Yap4 is a nuclear-resident transcription factor induced in Saccharomyces cerevisiae when exposed to several stress conditions, which include mild hyperosmotic and oxidative stress, temperature shift or metal exposure. This protein is also phosphorylated. Here we report that this modification is driven by PKA and GSK3. In order to ascertain whether Yap4 is directly or indirectly phosphorylated by PKA, we searched for stress and PKA-related kinases that could phosphorylate Yap4. We show that phosphorylation is independent of the kinases Rim15, Yak1, Sch9, Slt2, Ste20 and Ptk2. In addition, we showed that Yap4 phosphorylation is also abrogated in the triple GSK3 mutant mck1 rim11 yol128c. Furthermore, our data reveal that Yap4 nuclear localization is independent of its phosphorylation state. This protein has several putative phosphorylation sites, but only the mutation of residues T192 and S196 impairs its phosphorylation under different stress conditions. The ability of the non-phosphorylated forms of Yap4 to partially rescue the hog1 severe sensitivity phenotype is not affected, suggesting that Yap4 activity is maintained in the absence of phosphorylation. However, this modification seems to be required for stability of the protein, as the non-phosphorylated form has a shorter half-life than the phosphorylated one.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Cartilla de ADN/genética , Genes Fúngicos , Glucógeno Sintasa Quinasa 3/genética , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico , Factores de Transcripción/química , Factores de Transcripción/genética
4.
Biochem J ; 414(2): 301-11, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18439143

RESUMEN

In the budding yeast Saccharomyces cerevisiae, arsenic detoxification involves the activation of Yap8, a member of the Yap (yeast AP-1-like) family of transcription factors, which in turn regulates ACR2 and ACR3, genes encoding an arsenate reductase and a plasma-membrane arsenite-efflux protein respectively. In addition, Yap1 is involved in the arsenic adaptation process through regulation of the expression of the vacuolar pump encoded by YCF1 (yeast cadmium factor 1 gene) and also contributing to the regulation of ACR genes. Here we show that Yap1 is also involved in the removal of ROS (reactive oxygen species) generated by arsenic compounds. Data on lipid peroxidation and intracellular oxidation indicate that deletion of YAP1 and YAP8 triggers cellular oxidation mediated by inorganic arsenic. In spite of the increased amounts of As(III) absorbed by the yap8 mutant, the enhanced transcriptional activation of the antioxidant genes such as GSH1 (gamma- glutamylcysteine synthetase gene), SOD1 (superoxide dismutase 1 gene) and TRX2 (thioredoxin 2 gene) may prevent protein oxidation. In contrast, the yap1 mutant exhibits high contents of protein carbonyl groups and the GSSG/GSH ratio is severely disturbed on exposure to arsenic compounds in these cells. These results point to an additional level of Yap1 contribution to arsenic stress responses by preventing oxidative damage in cells exposed to these compounds. Transcriptional profiling revealed that genes of the functional categories related to sulphur and methionine metabolism and to the maintenance of cell redox homoeostasis are activated to mediate adaptation of the wild-type strain to 2 mM arsenate treatment.


Asunto(s)
Arsénico/farmacología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Transcripción/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Northern Blotting , Western Blotting , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Biol Open ; 4(9): 1122-31, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26276098

RESUMEN

Adaptation of Saccharomyces cerevisiae cells to arsenic stress is mediated through the activation of arsenic detoxification machinery by the Yap8 transcription factor. Yap8 is targeted by the ubiquitin proteasome system for degradation under physiological conditions, yet it escapes proteolysis in arsenic-injured cells by a mechanism that remains to be elucidated. Here, we show that Ufd2, an E4-Ubiquitin (Ub) ligase, is upregulated by arsenic compounds both at mRNA and protein levels. Under these conditions, Ufd2 interacts with Yap8 mediating its stabilization, thereby controlling expression of ACR3 and capacity of cells to adapt to arsenic injury. We also show that Ufd2 U-box domain, which is associated to the ubiquitination activity of specific ubiquitin ligases, is dispensable for Yap8 stability and has no role in cell tolerance to arsenic stress. Thus, our data disclose a novel Ufd2 role beyond degradation. This finding is further supported by genetic analyses showing that proteins belonging to Ufd2 proteolytic pathways, namely Ubc4, Rad23 and Dsk2, mediate Yap8 degradation.

6.
FEBS Lett ; 566(1-3): 141-6, 2004 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-15147884

RESUMEN

Yap8p, a member of the Saccharomyces cerevisiae Yap family, is activated in response to arsenic. Both the mechanisms by which this activation takes place and its regulation have not yet been identified. In this report, we show that Yap8p is not activated at the transcriptional level but, rather, its nuclear transport is actively regulated and dependent on the exportin chromosome region maintenance protein. In addition, it is shown that Cys(132), Cys(137)and Cys(274) are essential for Yap8p localization and transactivation function both of which are required for its biological activity.


Asunto(s)
Arsénico/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Northern Blotting , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Cisteína/genética , Eliminación de Gen , Genotipo , Microscopía Fluorescente , Datos de Secuencia Molecular , Fenotipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional/efectos de los fármacos
7.
Oxid Med Cell Longev ; 2012: 132146, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701754

RESUMEN

Alzheimer's (AD) and Parkinson's (PD) diseases are the two most common causes of dementia in aged population. Both are protein-misfolding diseases characterized by the presence of protein deposits in the brain. Despite growing evidence suggesting that oxidative stress is critical to neuronal death, its precise role in disease etiology and progression has not yet been fully understood. Budding yeast Saccharomyces cerevisiae shares conserved biological processes with all eukaryotic cells, including neurons. This fact together with the possibility of simple and quick genetic manipulation highlights this organism as a valuable tool to unravel complex and fundamental mechanisms underlying neurodegeneration. In this paper, we summarize the latest knowledge on the role of oxidative stress in neurodegenerative disorders, with emphasis on AD and PD. Additionally, we provide an overview of the work undertaken to study AD and PD in yeast, focusing the use of this model to understand the effect of oxidative stress in both diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Saccharomyces cerevisiae/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Humanos , Modelos Biológicos , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda