Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ecol Appl ; 29(6): e01946, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31173423

RESUMEN

There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces, we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups: plants, invertebrates, and soil microbes. We found that all meadow treatments were colonized by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonizing species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0-10 cm), but in deeper soils (11-20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents' site satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate, and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximize such benefits.


Asunto(s)
Biodiversidad , Pradera , Ecosistema , Plantas , Suelo
2.
Sci Total Environ ; 860: 160484, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36436632

RESUMEN

The restoration of degraded lands and minimizing the degradation of productive lands are at the forefront of many environmental land management schemes around the world. A key indicator of soil productivity is soil organic carbon (SOC), which influences the provision of most soil ecosystem services. A major challenge in direct measurement of changes in SOC stock is that it is difficult to detect within a short timeframe relevant to land managers. In this study, we sought to identify suitable early indicators of changes in SOC stock and their drivers. A meta-analytical approach was used to synthesize global data on the impacts of arable land conversion to other uses on total SOC stock, 12 different SOC fractions and three soil structural properties. The conversion of arable lands to forests and grasslands accounted for 91 % of the available land use change datasets used for the meta-analysis and were mostly from Asia and Europe. Land use change from arable lands led to 50 % (32-68 %) mean increase in both labile (microbial biomass C and particulate organic C - POC) and passive (microaggregate, 53-250 µm diameter; and small macroaggregate, 250-2000 µm diameter) SOC fractions as well as soil structural stability. There was also 37 % (24-50 %) mean increase in total SOC stock in the experimental fields where the various SOC fractions were measured. Only the POC and the organic carbon stored in small macroaggregates had strong correlation with total SOC: our findings reveal these two SOC fractions were predominantly controlled by biomass input to the soil rather than climatic factors and are thus suitable candidate indicators of short-term changes in total SOC stock. Further field studies are recommended to validate the predictive power of the equations we developed in this study and the use of the SOC metrics under different land use change scenarios.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Carbono , Bosques , Biomasa , Secuestro de Carbono
3.
Talanta ; 85(5): 2599-604, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21962689

RESUMEN

This paper presents a statistical technique that can be applied to environmental chemistry data where missing values and limit of detection levels prevent the application of statistics. A working example is taken from an environmental leaching study that was set up to determine if there were significant differences in levels of leached arsenic (As), chromium (Cr) and copper (Cu) between lysimeters containing preservative treated wood waste and those containing untreated wood. Fourteen lysimeters were setup and left in natural conditions for 21 weeks. The resultant leachate was analysed by ICP-OES to determine the As, Cr and Cu concentrations. However, due to the variation inherent in each lysimeter combined with the limits of detection offered by ICP-OES, the collected quantitative data was somewhat incomplete. Initial data analysis was hampered by the number of 'missing values' in the data. To recover the dataset, the statistical tool of Statistical Multiple Imputation (SMI) was applied, and the data was re-analysed successfully. It was demonstrated that using SMI did not affect the variance in the data, but facilitated analysis of the complete dataset.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda