Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Hum Genet ; 111(6): 1206-1221, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772379

RESUMEN

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Asunto(s)
Trastornos del Neurodesarrollo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Epilepsia/genética , Secuenciación del Exoma , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Heterocigoto , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Linaje , Fenotipo , Canales de Potasio Shal/genética
2.
Cell Mol Life Sci ; 81(1): 186, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632116

RESUMEN

Pathogenic variants in SLC6A8, the gene which encodes creatine transporter SLC6A8, prevent creatine uptake in the brain and result in a variable degree of intellectual disability, behavioral disorders (e.g., autism spectrum disorder), epilepsy, and severe speech and language delay. There are no treatments to improve neurodevelopmental outcomes for creatine transporter deficiency (CTD). In this spotlight, we summarize recent advances in innovative molecules to treat CTD, with a focus on dodecyl creatine ester, the most promising drug candidate.


Asunto(s)
Trastorno del Espectro Autista , Encefalopatías Metabólicas Innatas , Creatina/deficiencia , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Humanos , Creatina/genética , Creatina/uso terapéutico , Encefalopatías Metabólicas Innatas/tratamiento farmacológico , Encefalopatías Metabólicas Innatas/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual Ligada al Cromosoma X/tratamiento farmacológico , Discapacidad Intelectual Ligada al Cromosoma X/genética
3.
Mol Genet Metab ; 142(4): 108530, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968673

RESUMEN

Phosphoglucomutase-1-congenital disorder of glycosylation (PGM1-CDG) is a rare genetic disorder caused by biallelic variants in the PGM1 gene, leading to the deficiency of the PGM1 enzyme. The most common clinical presentations include muscle involvement, failure to thrive, cleft palate, and cardiac involvement. Abnormal serum N-glycosylation, hypoglycemia, and liver function abnormalities including coagulation abnormalities are the most common laboratory abnormalities. While PGM1-CDG has been extensively studied, little is known about the extent of the coagulation abnormalities in individuals with PGM1-CDG. Unlike most CDG, some symptoms of PGM1-CDG are treatable with D-galactose (D-gal) supplementation, though reliable clinical endpoints are necessary to appropriately evaluate the potential improvement with D-gal in PGM1-CDG. Here, we aimed to describe the incidence of coagulation abnormalities in PGM1-CDG and their evolution, their relation to clinical events, and the ability of D-gal treatment to improve them. A retrospective analysis was conducted on 73 reported individuals. All individuals had a molecularly confirmed PGM1-CDG diagnosis. All incidences of antithrombin (AT), aPTT, PT, factor (F) XI, FX, FIX, FVII, protein C and protein S data and major clinical events related to coagulation abnormalities, were collected. Coagulation information was available for only 58.9 % of the reported individuals, out of which 67.4 % of PGM1-CDG individuals were reported to have abnormalities. The most frequently observed abnormality was AT (mean: 30.8% R:80-120 %) deficiency. Four individuals had major thrombotic events. Coagulation status on D-gal treatment, were reported in 19 individuals. Several factors showed improvement including AT (mean: 64.5 %), indicating galactose is beneficial in treating coagulation abnormalities in PGM1-CDG. Due to the scarcity of the reported data on coagulation parameters, we also evaluated data collected in sixteen PGM1-CDG individuals enrolled in the FCDGC Natural History Study. Longitudinal data showed improvements in several coagulant parameters and disease severity improved for almost all patients of whom we had multiple datapoints on D-gal. AT showed significant improvement on D-gal. We conclude that coagulation abnormalities are frequently present in PGM1-CDG and show improvement on D-gal. We recommend coagulation parameters should be routinely checked in individuals with PGM1-CDG or suspected of having PGM1-CDG. Finally, AT may be used as a primary or secondary clinical endpoint for upcoming clinical trials in PGM1-CDG individuals.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Trastornos Congénitos de Glicosilación , Fosfoglucomutasa , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/patología , Fosfoglucomutasa/genética , Fosfoglucomutasa/deficiencia , Masculino , Femenino , Estudios Retrospectivos , Trastornos de la Coagulación Sanguínea/genética , Trastornos de la Coagulación Sanguínea/sangre , Lactante , Preescolar , Niño , Adolescente , Galactosa , Adulto , Adulto Joven , Glicosilación , Recién Nacido , Coagulación Sanguínea/genética
4.
Mol Genet Metab ; 142(1): 108362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452609

RESUMEN

Cerebral creatine deficiency syndromes (CCDS) are inherited metabolic phenotypes of creatine synthesis and transport. There are two enzyme deficiencies, guanidinoacetate methyltransferase (GAMT), encoded by GAMT and arginine-glycine amidinotransferase (AGAT), encoded by GATM, which are involved in the synthesis of creatine. After synthesis, creatine is taken up by a sodium-dependent membrane bound creatine transporter (CRTR), encoded by SLC6A8, into all organs. Creatine uptake is very important especially in high energy demanding organs such as the brain, and muscle. To classify the pathogenicity of variants in GAMT, GATM, and SLC6A8, we developed the CCDS Variant Curation Expert Panel (VCEP) in 2018, supported by The Clinical Genome Resource (ClinGen), a National Institutes of Health (NIH)-funded resource. We developed disease-specific variant classification guidelines for GAMT-, GATM-, and SLC6A8-related CCDS, adapted from the American College of Medical Genetics/Association of Molecular Pathology (ACMG/AMP) variant interpretation guidelines. We applied specific variant classification guidelines to 30 pilot variants in each of the three genes that have variants associated with CCDS. Our CCDS VCEP was approved by the ClinGen Sequence Variant Interpretation Working Group (SVI WG) and Clinical Domain Oversight Committee in July 2022. We curated 181 variants including 72 variants in GAMT, 45 variants in GATM, and 64 variants in SLC6A8 and submitted these classifications to ClinVar, a public variant database supported by the National Center for Biotechnology Information. Missense variants were the most common variant type in all three genes. We submitted 32 new variants and reclassified 34 variants with conflicting interpretations. We report specific phenotype (PP4) using a points system based on the urine and plasma guanidinoacetate and creatine levels, brain magnetic resonance spectroscopy (MRS) creatine level, and enzyme activity or creatine uptake in fibroblasts ranging from PP4, PP4_Moderate and PP4_Strong. Our CCDS VCEP is one of the first panels applying disease specific variant classification algorithms for an X-linked disease. The availability of these guidelines and classifications can guide molecular genetics and genomic laboratories and health care providers to assess the molecular diagnosis of individuals with a CCDS phenotype.


Asunto(s)
Amidinotransferasas , Amidinotransferasas/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos , Creatina , Creatina/deficiencia , Guanidinoacetato N-Metiltransferasa , Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Trastornos del Movimiento/congénito , Proteínas del Tejido Nervioso , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Trastornos del Habla , Humanos , Guanidinoacetato N-Metiltransferasa/deficiencia , Guanidinoacetato N-Metiltransferasa/genética , Creatina/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Amidinotransferasas/genética , Amidinotransferasas/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Mutación , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/diagnóstico , Fenotipo , Curaduría de Datos , Discapacidades del Desarrollo
5.
Mol Genet Metab ; 142(4): 108509, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959600

RESUMEN

OBJECTIVE: Our report describes clinical, genetic, and biochemical features of participants with a molecularly confirmed congenital disorder of glycosylation (CDG) enrolled in the Frontiers in Congenital Disorders of Glycosylation (FCDGC) Natural History cohort at year 5 of the study. METHODS: We enrolled individuals with a known or suspected CDG into the FCDGC Natural History Study, a multicenter prospective and retrospective natural history study of all genetic causes of CDG. We conducted a cross-sectional analysis of baseline study visit data from participants with confirmed CDG who were consented into the FCDGC Natural History Study (5U54NS115198) from October 2019 to November 2023. RESULTS: Three hundred thirty-three subjects consented to the FCDGC Natural History Study. Of these, 280 unique individuals had genetic data available that was consistent with a diagnosis of CDG. These 280 individuals were enrolled into the study between October 8, 2019 and November 29, 2023. One hundred forty-one (50.4%) were female, and 139 (49.6%) were male. Mean and median age at enrollment was 10.1 and 6.5 years, respectively, with a range of 0.22 to 71.4 years. The cohort encompassed individuals with disorders of N-linked protein glycosylation (57%), glycosylphosphatidylinositol anchor disorder (GPI anchor) (15%), disorders of Golgi homeostasis, trafficking and transport (12%), dolichol metabolism disorders (5%), disorders of multiple pathways (6%), and other (5%). The most frequent presenting symptom(s) leading to diagnosis were developmental delay/disability (77%), followed by hypotonia (56%) and feeding difficulties (42%). Mean and median time between first related symptom and diagnosis was 2.7 and 0.8 years, respectively. One hundred percent of individuals in our cohort had developmental differences/disabilities at the time of their baseline visit, followed by 97% with neurologic involvement, 91% with gastrointestinal (GI)/liver involvement, and 88% with musculoskeletal involvement. Severity of disease in individuals was scored on the Nijmegen Progression CDG Rating Scale (NPCRS) with 27% of scores categorized as mild, 44% moderate, and 29% severe. Of the individuals with N-linked protein glycosylation defects, 83% of those with data showed a type 1 pattern on carbohydrate deficient transferrin (CDT) analysis including 82/84 individuals with PMM2-CDG, 6% a type 2 pattern, 1% both type 1 and type 2 pattern and 10% a normal or nonspecific pattern. One hundred percent of individuals with Golgi homeostasis and trafficking defects with data showed a type 2 pattern on CDT analysis, while Golgi transport defect showed a type II pattern 73% of the time, a type 1 pattern for 7%, and 20% had a normal or nonspecific pattern. Most of the variants documented were classified as pathogenic or likely pathogenic using ACMG criteria. For the majority of the variants, the predicted molecular consequence was missense followed by nonsense and splice site, and the majority of the diagnoses are inherited in an autosomal recessive pattern but with disorders of all major nuclear inheritance included. DISCUSSION: The FCDGC Natural History Study serves as an important resource to build future research studies, improve clinical care, and prepare for clinical trial readiness. Herein is the first overview of CDG participants of the FCDGC Natural History Study.


Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Masculino , Femenino , Estudios Transversales , Niño , Preescolar , Adolescente , Glicosilación , Adulto , Estudios Retrospectivos , Lactante , Adulto Joven , Estudios Prospectivos , Estudios de Cohortes
6.
Am J Med Genet A ; 194(8): e63595, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38549495

RESUMEN

Niemann-Pick disease type C (NPC) is one of the lysosomal storage disorders. It is caused by biallelic pathogenic variants in NPC1 or NPC2, which results in a defective cholesterol trafficking inside the late endosome and lysosome. There is a high clinical variability in the age of presentation and the phenotype of this disorder making the diagnosis challenging. Here, we report a patient with an infantile onset global developmental delay, microcephaly and dysmorphic features, homozygous for c.3560C>T (p.A1187V) variant in NPC1. His plasma oxysterol levels were normal on two occasions. His lyso-sphingomyelin-509 (lyso-SM 509) and urinary bile acid levels were normal. Based on the phenotype and biochemical features, the diagnosis of NPC was excluded in this patient. We emphasize the importance of functional characterization in the classification of novel variants to prevent a misdiagnosis. Matching the phenotype and biochemical evidence with the molecular genomic tests is crucial for the confirmation of genetic diagnoses.


Asunto(s)
Secuenciación del Exoma , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C , Fenotipo , Humanos , Proteína Niemann-Pick C1/genética , Masculino , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Enfermedad de Niemann-Pick Tipo C/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación/genética , Lactante
7.
J Inherit Metab Dis ; 47(3): 447-462, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38499966

RESUMEN

The objective of the study is to evaluate the evolving phenotype and genetic spectrum of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD) in long-term follow-up. Longitudinal clinical and biochemical data of 22 pediatric and 9 adult individuals with SSADHD from the patient registry of the International Working Group on Neurotransmitter related Disorders (iNTD) were studied with in silico analyses, pathogenicity scores and molecular modeling of ALDH5A1 variants. Leading initial symptoms, with onset in infancy, were developmental delay and hypotonia. Year of birth and specific initial symptoms influenced the diagnostic delay. Clinical phenotype of 26 individuals (median 12 years, range 1.8-33.4 years) showed a diversifying course in follow-up: 77% behavioral problems, 76% coordination problems, 73% speech disorders, 58% epileptic seizures and 40% movement disorders. After ataxia, dystonia (19%), chorea (11%) and hypokinesia (15%) were the most frequent movement disorders. Involvement of the dentate nucleus in brain imaging was observed together with movement disorders or coordination problems. Short attention span (78.6%) and distractibility (71.4%) were the most frequently behavior traits mentioned by parents while impulsiveness, problems communicating wishes or needs and compulsive behavior were addressed as strongly interfering with family life. Treatment was mainly aimed to control epileptic seizures and psychiatric symptoms. Four new pathogenic variants were identified. In silico scoring system, protein activity and pathogenicity score revealed a high correlation. A genotype/phenotype correlation was not observed, even in siblings. This study presents the diversifying characteristics of disease phenotype during the disease course, highlighting movement disorders, widens the knowledge on the genotypic spectrum of SSADHD and emphasizes a reliable application of in silico approaches.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Fenotipo , Succionato-Semialdehído Deshidrogenasa , Humanos , Succionato-Semialdehído Deshidrogenasa/deficiencia , Succionato-Semialdehído Deshidrogenasa/genética , Niño , Masculino , Femenino , Preescolar , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/genética , Lactante , Adolescente , Adulto Joven , Discapacidades del Desarrollo/genética , Trastornos del Movimiento/genética , Mutación , Hipotonía Muscular/genética
8.
BMC Pediatr ; 24(1): 37, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38216926

RESUMEN

BACKGROUND: Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits. METHODS: We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death. RESULTS: The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3-3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9-1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients' metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated. CONCLUSIONS: Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Evaluación de Resultado en la Atención de Salud , Niño , Humanos , Acil-CoA Deshidrogenasa , Canadá , Estudios Prospectivos , Preescolar
9.
Mol Genet Metab Rep ; 38: 101055, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469090

RESUMEN

Background: Galactosemia type I is an autosomal recessive disorder of galactose metabolism due to galactose-1-phosphate uridyltransferase deficiency, encoded by GALT. To investigate the phenotypes, genotypes and long-term outcomes of galactosemia, we performed a retrospective cohort study in our center. Methods: All individuals with galactosemia type I were included. We divided individuals into two groups to compare the outcomes of those treated symptomatically (SymX) and asymptomatically (AsymX). We reviewed electronic patient charts for clinical features, biochemical investigations, molecular genetic investigations, treatments, and outcomes. Results: There were 25 individuals including classic (n = 17), clinical variant (n = 4), and biochemical variant (Duarte) galactosemia (n = 4). Twelve individuals were diagnosed symptomatically (SymX), and 9 individuals were diagnosed asymptomatically (AsymX). We did not include individuals with biochemical variant (Duarte) galactosemia into any of these groups. At the time of the diagnosis, conjugated hyperbilirubinemia was present in 83.3% of SymX group, whereas only 22% of AsymX group. SymX group had hepatomegaly (25%), failure to thrive (33.3%), cataract (16.7%) and sepsis (25%), whereas none of the individuals in the AsymX group had these clinical features. Fourteen variants in GALT were identified including pathogenic/likely pathogenic (n = 12), and likely benign/benign (n = 2) variants. The vast majority of individuals with classic and clinical variant galactosemia were treated with a galactose-lactose-free diet for life (n = 20/21). Intellectual disability was present in 54.5% of the SymX group, and in 37.5% of the AsymX group as a long-term outcome. Tremors were present 50% of the SymX group, and in 22% of the AsymX group as a long-term outcome. Although, intellectual disability and tremors seem to be less common in the AsymX group, there was no statistically significant difference between both groups. Primary ovarian insufficiency was present 50% of the SymX group, whereas in 20% of the AsymX group in post-pubertal females. We report a novel hypomorphic GALT variant (p.Ala303Ser) in one individual with clinical variant galactosemia. We also report an individual with clinical variant galactosemia with normal urine galactitol levels on a normal diet. Conclusion: It seems that newborn screening and early administration of a galactose-lactose-free diet decreases the long-term galactosemia-associated complications but does not prevent them completely. It may be that not all individuals with clinical variant galactosemia may need a galactose-lactose-free diet. It is timely to find new therapeutic strategies that can reduce the frequency of late-onset complications in galactosemia.

10.
Orphanet J Rare Dis ; 19(1): 17, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238766

RESUMEN

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare genetic disorder of monoamine neurotransmitter synthesis that presents with a range of symptoms, including motor dysfunction and limited attainment of developmental motor milestones. The approval of eladocagene exuparvovec, a gene therapy for AADC deficiency with demonstrated efficacy for motor improvements, now expands the range of motor outcomes possible for patients with this disorder. However, recommendations and guidelines for therapy following treatment with gene therapy are lacking. To ensure patients can reach their full potential following treatment with gene therapy, it is essential they receive rehabilitation therapies designed specifically with their impairments and goals in mind. Therefore, we highlight specific rehabilitative needs of patients following gene therapy and propose a set of recommendations for the post-treatment period based on collective experiences of therapists, physicians, and caregivers treating and caring for patients with AADC deficiency who have been treated with gene therapy. These recommendations include a focus on periods of intensive therapy, facilitating active movements, training for functional abilities, cognitive and communication training, parent/caregiver empowerment, collaboration between therapists and caregivers to develop in-home programs, and the incorporation of supplemental forms of therapy that patients and their families may find more enjoyable and engaging. Many of these rehabilitative strategies may be employed prior to gene therapy. However, these recommendations will be valuable for therapists, caregivers, and wider treatment teams as they prepare for the post-treatment journey with these patients. Furthermore, the considerations and recommendations presented here may prove beneficial outside the AADC deficiency community as gene therapies and other treatments are developed and approved for other rare diseases.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Humanos , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Descarboxilasas de Aminoácido-L-Aromático/genética , Terapia Genética , Aminoácidos
11.
AJNR Am J Neuroradiol ; 45(6): 769-772, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38697787

RESUMEN

BACKGROUND AND PURPOSE: While classic brain MR imaging features of Alexander disease have been well-documented, lesional patterns can overlap with other leukodystrophies, especially in the early stages of the disease or in milder phenotypes. We aimed to assess the utility of a new neuroimaging sign to help increase the diagnostic specificity of Alexander disease. MATERIALS AND METHODS: A peculiar bilateral symmetric hyperintense signal on T2-weighted images affecting the medulla oblongata was identified in an index patient with type I Alexander disease. Subsequently, 5 observers performed a systematic MR imaging review for this pattern by examining 55 subjects with Alexander disease and 74 subjects with other leukodystrophies. Interobserver agreement was assessed by the κ index. Sensitivity, specificity, and receiver operating characteristic curves were determined. RESULTS: The identified pattern was present in 87% of subjects with Alexander disease and 14% of those without Alexander disease leukodystrophy (P < .001), 3 with vanishing white matter, 4 with adult polyglucosan body disease, and 3 others. It was found equally in both type I and type II Alexander disease (28/32, 88% versus 18/21, 86%; P = .851) and in subjects with unusual disease features (2/2). Sensitivity (87.3%; 95% CI, 76.0%-93.7%), specificity (86.5%; 95% CI, 76.9%-92.5%), and interobserver agreement (κ index = 0.82) were high. CONCLUSIONS: The identified pattern in the medulla oblongata, called the chipmunk sign due to its resemblance to the face of this rodent, is extremely common in subjects with Alexander disease and represents a diagnostic tool that can aid in early diagnosis, especially in subjects with otherwise atypical MR imaging findings and/or clinical features.


Asunto(s)
Enfermedad de Alexander , Imagen por Resonancia Magnética , Sensibilidad y Especificidad , Humanos , Enfermedad de Alexander/diagnóstico por imagen , Masculino , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Adolescente , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/patología , Niño , Anciano , Bulbo Raquídeo/diagnóstico por imagen , Bulbo Raquídeo/patología , Preescolar
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda