Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Fish Physiol Biochem ; 44(1): 329-341, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29101685

RESUMEN

Rainbow trout Oncorhynchus mykiss (~ 180 g, 16 °C and < 5 kg m-3) that were feed deprived and kept in total darkness showed a significant increase in critical swimming speed (U crit) between 1 and 12 days of deprivation (from 3.35 to 4.46 body length (BL) s-1) with no increase in maximum metabolic rate (MMR). They also showed a significant decrease in the estimated metabolic rate at 0 BL s-1 over 12 days which leads to a higher factorial aerobic metabolic scope at day 12 (9.38) compared to day 1 (6.54). Routine metabolic rates were also measured in ~ 90 g rainbow trout that were swimming freely in large circular respirometers at 16 °C. These showed decreasing consumption oxygen rates and reductions in the amount of oxygen consumed above standard metabolic rate (a proxy for spontaneous activity) over 12 days, though this happened significantly faster when they were kept in total darkness when compared to a 12:12-h light-dark (LD) photoperiod. Weight loss during this period was also significantly reduced in total darkness (3.33% compared to 4.98% total body weight over 12 days). Immunological assays did not reveal any consistent up- or downregulation of antipathogenic and antioxidant enzymes in the serum or skin mucus of rainbow trout between 1 and 12 days of feed and light deprivation. Overall, short periods of deprivation do not appear to significantly affect the performance of rainbow trout which appear to employ a behavioural energy-sparing strategy, albeit more so in darkness than under a 12:12-h LD regime.


Asunto(s)
Metabolismo Energético/fisiología , Privación de Alimentos , Oncorhynchus mykiss/metabolismo , Fotoperiodo , Natación/fisiología , Animales , Consumo de Oxígeno
2.
Artículo en Inglés | MEDLINE | ID: mdl-22587961

RESUMEN

The present study was undertaken to examine cardiac responses to some of the temperature challenges that eels encounter in their natural environment. The contractile properties of ventricular muscle was studied on electrically paced tissue strips after long term acclimation at 0 °C, 10 °C, or 20 °C, and following acute ± 10 °C temperature changes. The time-course of contraction, and thus maximal attainable heart rates, was greatly influenced by working temperature, but was independent of acclimation history. The absolute force of contraction and power production (i.e. the product of force and stimulation frequency) was significantly influenced by acute temperature decrease from 20 °C to 10 °C. The role of adrenaline as a modulator of contraction force, power production, rates of contraction and relaxation, and minimum time in contraction was assessed. Increased adrenergic tonus elicited a positive inotropic, temperature-dependent response, but did not influence twitch duration. This suggests that adrenaline acts as an agent in maintaining an adequate contractile force following temperature challenges. A significant increased relative ventricular mass was observed in 0 °C and 10 °C-acclimated eels compared to 20 °C-acclimated, which suggests that at low temperatures, eels secure cardiac output by heart enlargement. Inhibition of specific sarcolemmal Ca(2+) channels by selective drug treatment revealed that, depending on temperature, L-type channels is the major entry site, but also that reverse-mode Na(+)/Ca(2+)-exchange and store operated calcium entry contribute to the pool of activator Ca(2+).


Asunto(s)
Anguilla/fisiología , Migración Animal , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Estaciones del Año , Temperatura , Animales , Calcio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda