Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(4): E515-E527, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353639

RESUMEN

Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/1³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.


Asunto(s)
Gluconeogénesis , Hipoglucemia , Ratones , Animales , Gluconeogénesis/genética , Ácido Pirúvico/metabolismo , Tolerancia al Ejercicio , Hígado/metabolismo , Glucosa/metabolismo , Hipoglucemia/metabolismo , Lactatos/metabolismo , Alanina/metabolismo , Aminoácidos/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443201

RESUMEN

Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.


Asunto(s)
Tejido Adiposo/metabolismo , Lipodistrofia/metabolismo , Osteoartritis de la Rodilla/metabolismo , Tejido Adiposo/fisiopatología , Tejido Adiposo/trasplante , Adiposidad , Animales , Peso Corporal , Cartílago/patología , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/complicaciones , Susceptibilidad a Enfermedades/metabolismo , Femenino , Fibroblastos/metabolismo , Hiperplasia/complicaciones , Inflamación/metabolismo , Lipodistrofia/diagnóstico por imagen , Lipodistrofia/genética , Lipodistrofia/fisiopatología , Locomoción , Masculino , Ratones , Fuerza Muscular , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/prevención & control , Dolor/complicaciones , Comunicación Paracrina/fisiología
3.
J Physiol ; 600(16): 3795-3817, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35844058

RESUMEN

Adipose tissue secretes numerous cytokines (termed 'adipokines') that have known or hypothesized actions on skeletal muscle. The majority of adipokines have been implicated in the pathological link between excess adipose and muscle insulin resistance, but approximately half also have documented in vitro effects on myogenesis and/or hypertrophy. This complexity suggests a potential dual role for adipokines in the regulation of muscle mass in homeostasis and the development of pathology. In this study, we used lipodystrophic 'fat-free' mice to demonstrate that adipose tissue is indeed necessary for the development of normal muscle mass and strength. Fat-free mice had significantly reduced mass (∼15%) and peak contractile tension (∼20%) of fast-twitch muscles, a slowing of contractile dynamics and decreased cross-sectional area of fast twitch fibres compared to wild-type littermates. These deficits in mass and contractile tension were fully rescued by reconstitution of ∼10% of normal adipose mass, indicating that this phenotype is the direct consequence of absent adipose. We then showed that the rescue is solely mediated by the adipokine leptin, as similar reconstitution of adipose from leptin-knockout mice fails to rescue mass or strength. Together, these data indicate that the development of muscle mass and strength in wild-type mice is dependent on adipose-secreted leptin. This finding extends our current understanding of the multiple roles of adipokines in physiology as well as disease pathophysiology to include a critical role for the adipokine leptin in muscle homeostasis. KEY POINTS: Adipose-derived cytokines (adipokines) have long been implicated in the pathogenesis of insulin resistance in obesity but likely have other under-appreciated roles in muscle physiology. Here we use a fat-free mouse to show that adipose tissue is necessary for the normal development of muscle mass and strength. Through add-back of genetically modified adipose tissue we show that leptin is the key adipokine mediating this regulation. This expands our understanding of leptin's role in adipose-muscle signalling to include development and homeostasis and adds the surprising finding that leptin is the sole mediator of the maintenance of muscle mass and strength by adipose tissue.


Asunto(s)
Resistencia a la Insulina , Leptina , Adipoquinas , Tejido Adiposo/fisiología , Animales , Citocinas , Ratones , Músculo Esquelético
4.
Cleft Palate Craniofac J ; : 10556656221127840, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36330615

RESUMEN

OBJECTIVE: To examine levator veli palatini muscle composition in patients with nonsyndromic cleft palate and investigate the impact of Veau class. DESIGN: Prospective cohort study. SETTING: Tertiary care academic hospital. PATIENTS/PARTICIPANTS: Thirteen patients with nonsyndromic cleft palate were recruited. INTERVENTIONS: During primary palatoplasty, a sample of levator veli palatini muscle was excised and prepared for histological analysis. MAIN OUTCOME MEASURES: Fat and collagen content were determined utilizing Oil Red and Sirius red stains, respectively, while muscle fiber cross-sectional areas were calculated from H&E-stained samples, with analysis using histomorphometric methods. Immunofluorescent staining of myosin heavy chain isoforms was performed. RESULTS: Patients underwent repair at 10.8 months of age (interquartile range [IQR] 10.2-12.9). Fat content of the levator veli palatini muscle was low in both groups, ranging from 0% to 5.2%. Collagen content ranged from 8.5% to 39.8%; neither fat nor collagen content showed an association with Veau classes. Mean muscle fiber cross-sectional area decreased with increasing Veau class, from 808 µm2 (range 692-995 µm2) in Veau II to 651 µm2 (range 232-750 µm2) in Veau III (P = .02). There was also a nonsignificant decrease in proportion of type I muscle fibers with increasing Veau class (44.3% [range 31.4%-84.4%] in Veau II vs 35.3% [range 17.4%-61.3%] in Veau III). CONCLUSIONS: Muscle fiber area in levator veli palatini muscles decreases in Veau III clefts in comparison to Veau II. The impact of these differences in velopharyngeal dysfunction requires further analysis of a larger cohort.

5.
Diabetologia ; 64(5): 1158-1168, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33511440

RESUMEN

AIMS/HYPOTHESIS: It has been proposed that muscle fibre type composition and perfusion are key determinants of insulin-stimulated muscle glucose uptake, and alterations in muscle fibre type composition and perfusion contribute to muscle, and consequently whole-body, insulin resistance in people with obesity. The goal of the study was to evaluate the relationships among muscle fibre type composition, perfusion and insulin-stimulated glucose uptake rates in healthy, lean people and people with obesity. METHODS: We measured insulin-stimulated whole-body glucose disposal and glucose uptake and perfusion rates in five major muscle groups (erector spinae, obliques, rectus abdominis, hamstrings, quadriceps) in 15 healthy lean people and 37 people with obesity by using the hyperinsulinaemic-euglycaemic clamp procedure in conjunction with [2H]glucose tracer infusion (to assess whole-body glucose disposal) and positron emission tomography after injections of [15O]H2O (to assess muscle perfusion) and [18F]fluorodeoxyglucose (to assess muscle glucose uptake). A biopsy from the vastus lateralis was obtained to assess fibre type composition. RESULTS: We found: (1) a twofold difference in glucose uptake rates among muscles in both the lean and obese groups (rectus abdominis: 67 [51, 78] and 32 [21, 55] µmol kg-1 min-1 in the lean and obese groups, respectively; erector spinae: 134 [103, 160] and 66 [24, 129] µmol kg-1 min-1, respectively; median [IQR]) that was unrelated to perfusion or fibre type composition (assessed in the vastus only); (2) the impairment in insulin action in the obese compared with the lean group was not different among muscle groups; and (3) insulin-stimulated whole-body glucose disposal expressed per kg fat-free mass was linearly related with muscle glucose uptake rate (r2 = 0.65, p < 0.05). CONCLUSIONS/INTERPRETATION: Obesity-associated insulin resistance is generalised across all major muscles, and is not caused by alterations in muscle fibre type composition or perfusion. In addition, insulin-stimulated whole-body glucose disposal relative to fat-free mass provides a reliable index of muscle glucose uptake rate.


Asunto(s)
Glucosa/metabolismo , Insulina/farmacología , Músculo Esquelético/efectos de los fármacos , Obesidad/metabolismo , Delgadez/metabolismo , Adulto , Transporte Biológico/efectos de los fármacos , Biopsia , Femenino , Fluorodesoxiglucosa F18 , Glucosa/farmacocinética , Técnica de Clampeo de la Glucosa , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/diagnóstico por imagen , Obesidad/patología , Tomografía de Emisión de Positrones , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/efectos de los fármacos , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Delgadez/diagnóstico por imagen , Delgadez/patología
6.
J Physiol ; 598(13): 2669-2683, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32358797

RESUMEN

KEY POINTS: Muscle infiltration with adipose tissue (IMAT) is common and associated with loss of skeletal muscle strength and physical function across a diverse set of pathologies. Whether the association between IMAT and muscle weakness is causative or simply correlative remains an open question that needs to be addressed to effectively guide muscle strengthening interventions in people with increased IMAT. In the present studies, we demonstrate that IMAT deposition causes decreased muscle strength using mouse models. These findings indicate IMAT is a novel therapeutic target for muscle dysfunction. ABSTRACT: Intramuscular adipose tissue (IMAT) is associated with deficits in strength and physical function across a wide array of conditions, from injury to ageing to metabolic disease. Due to the diverse aetiologies of the primary disorders involving IMAT and the strength of the associations, it has long been proposed that IMAT directly contributes to this muscle dysfunction. However, infiltration of IMAT and reduced strength could both be driven by muscle disuse, injury and systemic disease, making IMAT simply an 'innocent bystander.' Here, we utilize novel mouse models to evaluate the direct effect of IMAT on muscle contraction. First, we utilize intramuscular glycerol injection in wild-type mice to evaluate IMAT in the absence of systemic disease. In this model we find that, in isolation from the neuromuscular and circulatory systems, there remains a muscle-intrinsic association between increased IMAT volume and decreased contractile tension (r2  > 0.5, P < 0.01) that cannot be explained by reduction in contractile material. Second, we utilize a lipodystrophic mouse model which cannot generate adipocytes to 'rescue' the deficits. We demonstrate that without IMAT infiltration, glycerol treatment does not reduce contractile force (P > 0.8). Taken together, this indicates that IMAT is not an inert feature of muscle pathology but rather has a direct impact on muscle contraction. This finding suggests that novel strategies targeting IMAT may improve muscle strength and function in a number of populations.


Asunto(s)
Tejido Adiposo , Contracción Muscular , Adipocitos , Animales , Ratones , Fuerza Muscular , Músculo Esquelético
7.
Connect Tissue Res ; 61(3-4): 248-261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31492079

RESUMEN

Purpose/Aim: Skeletal muscle tissue explants have been cultured and studied for nearly 100 years. These cultures, which retain complex tissue structure in an environment suited to precision manipulation and measurement, have led to seminal discoveries of the extrinsic and intrinsic mechanisms regulating contractility, metabolism and regeneration. This review discusses the two primary models of muscle explant: isolated myofiber and intact muscle.Materials and Methods: Relevant literature was reviewed and synthesized with a focus on the unique challenges and capabilities of each explant model.Results: Impactful past, current and future novel applications are discussed.Conclusions: Experiments using skeletal muscle explants have been integral to our understanding of the fundamentals of muscle physiology. As they are refined and adapted, they are poised to continue to inform the field for years to come.


Asunto(s)
Diferenciación Celular , Modelos Biológicos , Músculo Esquelético/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Animales , Humanos , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/patología
8.
Muscle Nerve ; 58(6): 858-862, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30159908

RESUMEN

INTRODUCTION: Efficient repositioning of centralized nuclei after injury has long been assumed, with centralized nuclei frequently cited as indicators of ongoing regeneration. However, reports of centralized nuclei that persist after full recovery of fiber area and muscle force production call into question the time course of nuclear repositioning. METHODS: We evaluated regeneration after cardiotoxin-induced damage in 10-week-old mice by quantifying intracellular and extracellular pathology at 2 and 94 weeks post-injection. RESULTS: Centrally nucleated fibers were still prevalent at 94 weeks post-injection, representing > 25% of muscle fibers. Areas with > 90% centrally nucleated fibers could still be identified. Extra-myocellular indicators of regeneration (e.g., fibrosis and fatty infiltration) also remained significantly elevated at the 94-week time-point. DISCUSSION: These findings indicate that not all nuclei are repositioned at the conclusion of induced muscle regeneration. Muscle Nerve 58:858-862, 2018.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Regeneración/fisiología , Animales , Cardiotoxinas/toxicidad , Colágeno/metabolismo , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/patología , Regeneración/efectos de los fármacos
9.
Muscle Nerve ; 58(6): 843-851, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30230560

RESUMEN

INTRODUCTION: Posttraumatic elbow contracture is clinically challenging because injury often disrupts multiple periarticular soft tissues. Tissue specific contribution to contracture, particularly muscle, remains poorly understood. METHODS: In this study we used a previously developed animal model of elbow contracture. After surgically inducing a unilateral soft tissue injury, injured limbs were immobilized for 3, 7, 21, and 42 days (IM) or for 42 IM with 42 days of free mobilization (42/42 IM-FM). Biceps brachii active/passive mechanics and morphology were evaluated at 42 IM and 42/42 IM-FM, whereas biceps brachii and brachialis gene expression was evaluated at all time points. RESULTS: Injured limb muscle exhibited significantly altered active/passive mechanics and decreased fiber area at 42 IM but returned to control levels by 42/42 IM-FM. Gene expression suggested muscle growth rather than a fibrotic response at 42/42 IM-FM. DISCUSSION: Muscle is a transient contributor to motion loss in our rat model of posttraumatic elbow contracture. Muscle Nerve 58:843-851, 2018.


Asunto(s)
Neuropatías del Plexo Braquial/complicaciones , Contractura/fisiopatología , Regulación de la Expresión Génica/fisiología , Músculo Esquelético/fisiopatología , Traumatismos de los Tejidos Blandos/patología , Animales , Colágeno Tipo I/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Lateralidad Funcional , Inmovilización , Laminina/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Rango del Movimiento Articular/fisiología , Ratas , Ratas Long-Evans , Traumatismos de los Tejidos Blandos/complicaciones , Factores de Tiempo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Factor de Crecimiento Transformador beta3/genética , Factor de Crecimiento Transformador beta3/metabolismo
10.
J Cell Sci ; 128(2): 219-24, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25413344

RESUMEN

A fundamental requirement of cells is their ability to transduce and interpret their mechanical environment. This ability contributes to regulation of growth, differentiation and adaptation in many cell types. The intermediate filament (IF) system not only provides passive structural support to the cell, but recent evidence points to IF involvement in active biological processes such as signaling, mechanotransduction and gene regulation. However, the mechanisms that underlie these processes are not well known. Skeletal muscle cells provide a convenient system to understand IF function because the major muscle-specific IF, desmin, is expressed in high abundance and is highly organized. Here, we show that desmin plays both structural and regulatory roles in muscle cells by demonstrating that desmin is required for the maintenance of myofibrillar alignment, nuclear deformation, stress production and JNK-mediated stress sensing. Finite element modeling of the muscle IF system suggests that desmin immediately below the sarcolemma is the most functionally significant. This demonstration of biomechanical integration by the desmin IF system suggests that it plays an active biological role in muscle in addition to its accepted structural role.


Asunto(s)
Desmina/metabolismo , Filamentos Intermedios/metabolismo , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Animales , Desmina/genética , Humanos , Filamentos Intermedios/ultraestructura , Mecanotransducción Celular/genética , Ratones Noqueados , Músculo Esquelético/ultraestructura , Miofibrillas/ultraestructura , Sarcolema/genética , Sarcolema/metabolismo , Estrés Mecánico
11.
Connect Tissue Res ; 56(1): 1-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25047058

RESUMEN

Increasing evidence points to extracellular matrix (ECM) components playing integral roles in regulating the muscle satellite cell (SC) niche. Even small alterations to the niche ECM can have profound effects on SC localization, activation, self-renewal, proliferation and differentiation. This review will focus on the ECM components that comprise the niche, how they are modulated in health and disease and how these changes are thought to affect SC function. Particular emphasis will be placed on the pathological niche and interventions that aim to restore healthy structure and function, as a better understanding of the interplay between the SC and its environment will drive more targeted and effective therapies.


Asunto(s)
Matriz Extracelular/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Nicho de Células Madre , Animales , Diferenciación Celular , Humanos , Modelos Biológicos , Células Satélite del Músculo Esquelético/citología , Trasplante de Células Madre
12.
Diabetes ; 73(8): 1266-1277, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701374

RESUMEN

Observational studies have shown correlations between intramyocellular lipid (IMCL) content and muscle strength and contractile function in people with metabolically abnormal obesity. However, a clear physiologic mechanism for this association is lacking, and causation is debated. We combined immunofluorescent confocal imaging with force measurements on permeabilized muscle fibers from metabolically normal and metabolically abnormal mice and people with metabolically normal (defined as normal fasting plasma glucose and glucose tolerance) and metabolically abnormal (defined as prediabetes and type 2 diabetes) overweight/obesity to evaluate relationships among myocellular lipid droplet characteristics (droplet size and density) and biophysical (active contractile and passive viscoelastic) properties. The fiber type specificity of lipid droplet parameters varied by metabolic status and by species. It was different between mice and people across the board and different between people of different metabolic status. However, despite considerable quantities of IMCL in the metabolically abnormal groups, there were no significant differences in peak active tension or passive viscoelasticity between the metabolically abnormal and control groups in mice or people. Additionally, there were no significant relationships among IMCL parameters and biophysical variables. Thus, we conclude that IMCL accumulation per se does not impact muscle fiber biophysical properties or physically impede contraction.


Asunto(s)
Fibras Musculares Esqueléticas , Obesidad , Animales , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/patología , Ratones , Humanos , Masculino , Femenino , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Adulto , Metabolismo de los Lípidos/fisiología , Estado Prediabético/metabolismo , Estado Prediabético/fisiopatología , Contracción Muscular/fisiología , Ratones Endogámicos C57BL , Gotas Lipídicas/metabolismo
13.
J Appl Physiol (1985) ; 136(6): 1559-1567, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722753

RESUMEN

Mice with skeletal muscle-specific and inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and, thus, whether they could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ∼65% reduction in in vivo ankle dorsiflexion torque, as compared with wild type (WT; i.e., Cre negative) littermates. Despite this profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial-specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume, or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice.NEW & NOTEWORTHY The mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both E1A binding protein p300 (p300) and cAMP-response element-binding protein binding protein (CBP) in skeletal muscle remains unknown. Here, we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca2+ handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca2+ and bypasses membrane depolarization.


Asunto(s)
Ratones Noqueados , Contracción Muscular , Músculo Esquelético , Animales , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Ratones , Procesamiento Proteico-Postraduccional , Proteína p300 Asociada a E1A/metabolismo , Proteína de Unión a CREB/metabolismo , Masculino , Calcio/metabolismo , Adenosina Trifosfato/metabolismo , Acetilación
14.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38463996

RESUMEN

Mice with skeletal muscle-specific inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and thus could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ∼65% reduction in in vivo ankle dorsiflexion torque, as compared to wildtype (WT; i.e. Cre negative) littermates. Despite the profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca 2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca 2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice. New & Noteworthy: The mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both p300 and CBP in skeletal muscle remains unknown. Here we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca 2+ handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca 2+ and bypasses membrane depolarization.

15.
Gait Posture ; 112: 159-166, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797052

RESUMEN

BACKGROUND: Decreased muscle volume and increased muscle-associated adipose tissue (MAAT, sum of intra and inter-muscular adipose tissue) of the foot intrinsic muscle compartment are associated with deformity, decreased function, and increased risk of ulceration and amputation in those with diabetic peripheral neuropathy (DPN). RESEARCH QUESTION: What is the muscle quality (normal, abnormal muscle, and adipose volumes) of the DPN foot intrinsic compartment, how does it change over time, and is muscle quality related to gait and foot function? METHODS: Computed tomography was performed on the intrinsic foot muscle compartment of 45 subjects with DPN (mean age: 67.2 ± 6.4 years) at baseline and 3.6 years. Images were processed to obtain volumes of MAAT, highly abnormal, mildly abnormal, and normal muscle. For each category, annual rates of change were calculated. Paired t-tests compared baseline and follow-up. Foot function during gait was assessed using 3D motion analysis and the Foot and Ankle Ability Measure. Correlations between muscle compartment and foot function during gait were analyzed using Pearson's correlations. RESULTS: Total muscle volume decreased, driven by a loss of normal muscle and mildly abnormal muscle (p<0.05). MAAT and the adipose-muscle ratio increased. At baseline, 51.5% of the compartment was abnormal muscle or MAAT, increasing to 55.0% at follow-up. Decreased total muscle volume correlated with greater midfoot collapse during gait (r = -0.40, p = 0.02). Greater volumes of highly abnormal muscle correlated with a lower FAAM score (r = -0.33, p = 0.03). SIGNIFICANCE: Muscle volume loss may progress in parallel with MAAT accumulation, impacting contractile performance in individuals with DPN. Only 48.5% of the DPN intrinsic foot muscle compartment consists of normal muscle and greater abnormal muscle is associated with worse foot function. These changes identify an important target for rehabilitative intervention to slow or prevent muscle deterioration and poor foot outcomes.


Asunto(s)
Neuropatías Diabéticas , Músculo Esquelético , Tomografía Computarizada por Rayos X , Humanos , Anciano , Masculino , Femenino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiopatología , Neuropatías Diabéticas/fisiopatología , Neuropatías Diabéticas/diagnóstico por imagen , Persona de Mediana Edad , Tejido Adiposo/diagnóstico por imagen , Pie/diagnóstico por imagen , Pie/fisiopatología , Marcha/fisiología
16.
JCI Insight ; 9(4)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175722

RESUMEN

Patients with diabetes have a high risk of developing skeletal diseases accompanied by diabetic peripheral neuropathy (DPN). In this study, we isolated the role of DPN in skeletal disease with global and conditional knockout models of sterile-α and TIR-motif-containing protein-1 (Sarm1). SARM1, an NADase highly expressed in the nervous system, regulates axon degeneration upon a range of insults, including DPN. Global knockout of Sarm1 prevented DPN, but not skeletal disease, in male mice with type 1 diabetes (T1D). Female wild-type mice also developed diabetic bone disease but without DPN. Unexpectedly, global Sarm1 knockout completely protected female mice from T1D-associated bone suppression and skeletal fragility despite comparable muscle atrophy and hyperglycemia. Global Sarm1 knockout rescued bone health through sustained osteoblast function with abrogation of local oxidative stress responses. This was independent of the neural actions of SARM1, as beneficial effects on bone were lost with neural conditional Sarm1 knockout. This study demonstrates that the onset of skeletal disease occurs rapidly in both male and female mice with T1D completely independently of DPN. In addition, this reveals that clinical SARM1 inhibitors, currently being developed for treatment of neuropathy, may also have benefits for diabetic bone through actions outside of the nervous system.


Asunto(s)
Enfermedades Óseas , Diabetes Mellitus Tipo 1 , Enfermedades del Sistema Nervioso Periférico , Humanos , Masculino , Femenino , Ratones , Animales , Axones , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Ratones Noqueados , Proteínas del Citoesqueleto/genética , Proteínas del Dominio Armadillo/genética
17.
Physiol Genomics ; 45(8): 321-31, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23444318

RESUMEN

In this work, the interaction between the loss of a primary component of the skeletal muscle cytoskeleton, desmin, and two common physiological stressors, acute mechanical injury and aging, were investigated at the transcriptional, protein, and whole muscle levels. The transcriptional response of desmin knockout (des(-/-)) plantarflexors to a bout of 50 eccentric contractions (ECCs) showed substantial overlap with the response in wild-type (wt) muscle. However, changes in the expression of genes involved in muscle response to injury were blunted in adult des(-/-) muscle compared with wt (fold change with ECC in des(-/-) and wt, respectively: Mybph, 1.4 and 2.9; Xirp1, 2.2 and 5.7; Csrp3, 1.8 and 4.3), similar to the observed blunted mechanical response (torque drop: des(-/-) 30.3% and wt 55.5%). Interestingly, in the absence of stressors, des(-/-) muscle exhibited elevated expression of many these genes compared with wt. The largest transcriptional changes were observed in the interaction between aging and the absence of desmin, including many genes related to slow fiber pathway (Myh7, Myl3, Atp2a2, and Casq2) and insulin sensitivity (Tlr4, Trib3, Pdk3, and Pdk4). Consistent with these transcriptional changes, adult des(-/-) muscle exhibited a significant fiber type shift from fast to slow isoforms of myosin heavy chain (wt, 5.3% IIa and 71.7% IIb; des(-/-), 8.4% IIa and 61.4% IIb) and a decreased insulin-stimulated glucose uptake (wt, 0.188 µmol/g muscle/20 min; des(-/-), 0.085 µmol/g muscle/20 min). This work points to novel areas of influence of this cytoskeletal protein and directs future work to elucidate its function.


Asunto(s)
Citoesqueleto/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento/fisiología , Animales , Desmina/deficiencia , Desmina/genética , Técnicas In Vitro , Insulina/farmacología , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Cadenas Pesadas de Miosina/genética
18.
J Vis Exp ; (196)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358301

RESUMEN

Fatty infiltration is the accumulation of adipocytes between myofibers in skeletal muscle and is a prominent feature of many myopathies, metabolic disorders, and dystrophies. Clinically in human populations, fatty infiltration is assessed using noninvasive methods, including computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). Although some studies have used CT or MRI to quantify fatty infiltration in mouse muscle, costs and insufficient spatial resolution remain challenging. Other small animal methods utilize histology to visualize individual adipocytes; however, this methodology suffers from sampling bias in heterogeneous pathology. This protocol describes the methodology to qualitatively view and quantitatively measure fatty infiltration comprehensively throughout intact mouse muscle and at the level of individual adipocytes using decellularization. The protocol is not limited to specific muscles or specific species and can be extended to human biopsy. Additionally, gross qualitative and quantitative assessments can be made with standard laboratory equipment for little cost, making this procedure more accessible across research laboratories.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Ratones , Animales , Humanos , Músculo Esquelético/metabolismo , Enfermedades Musculares/patología , Adipocitos/metabolismo , Tomografía Computarizada por Rayos X , Imagen por Resonancia Magnética/métodos
19.
bioRxiv ; 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37662392

RESUMEN

Exercise robustly increases the glucose demands of skeletal muscle. This demand is met not only by muscle glycogenolysis, but also by accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting gluconeogenic efficiency and capacity on exercise performance by deleting hepatic mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or post-exercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in liver (DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of ²H/¹³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. The decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan crosstalk during exercise as described by the Cahill and Cori cycles.

20.
EMBO Mol Med ; 15(6): e16883, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37154692

RESUMEN

ABCC9-related intellectual disability and myopathy syndrome (AIMS) arises from loss-of-function (LoF) mutations in the ABCC9 gene, which encodes the SUR2 subunit of ATP-sensitive potassium (KATP ) channels. KATP channels are found throughout the cardiovascular system and skeletal muscle and couple cellular metabolism to excitability. AIMS individuals show fatigability, muscle spasms, and cardiac dysfunction. We found reduced exercise performance in mouse models of AIMS harboring premature stop codons in ABCC9. Given the roles of KATP channels in all muscles, we sought to determine how myopathy arises using tissue-selective suppression of KATP and found that LoF in skeletal muscle, specifically, underlies myopathy. In isolated muscle, SUR2 LoF results in abnormal generation of unstimulated forces, potentially explaining painful spasms in AIMS. We sought to determine whether excessive Ca2+ influx through CaV 1.1 channels was responsible for myopathology but found that the Ca2+ channel blocker verapamil unexpectedly resulted in premature death of AIMS mice and that rendering CaV 1.1 channels nonpermeable by mutation failed to reverse pathology; results which caution against the use of calcium channel blockers in AIMS.


Asunto(s)
Enfermedades Musculares , Canales de Potasio de Rectificación Interna , Animales , Ratones , Adenosina Trifosfato , Músculo Esquelético/metabolismo , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/genética , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Verapamilo/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda