Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Metab Brain Dis ; 39(4): 635-648, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38429463

RESUMEN

Obesity results from an energy imbalance and has been considered an epidemic due to its increasing rates worldwide. It is classified as a low-grade chronic inflammatory disease and has associated comorbidities. Different nutritional strategies are used for the purpose of weight loss, highlighting low-carbohydrate (LC) diets, ketogenic diets, and intermittent fasting (IF). These strategies can lead to metabolic and behavioral changes as they stimulate different biochemical pathways. Therefore, this study evaluated memory, energy metabolism, neuroinflammation, oxidative stress, and antioxidant defense parameters in mice subjected to an LC diet, ketogenic diet (KD), or IF. Eighty male Swiss mice, 60 days old, were divided into 4 groups: control, LC, KD, or IF. Body weight was measured weekly, and food intake every 48 h. After 15 days of nutritional interventions, the animals were subjected to the behavioral object recognition test and subsequently euthanized. Then, visceral fat was removed and weighed, and the brain was isolated for inflammatory and biochemical analysis. We concluded from this study that the LC and KD strategies could damage memory, IF improves the production of adenosine triphosphate (ATP), and the LC, KD, and IF strategies do not lead to neuroinflammatory damage but present damage at the level of oxidative stress.


Asunto(s)
Dieta Cetogénica , Estrés Oxidativo , Animales , Masculino , Ratones , Estrés Oxidativo/fisiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/etiología , Enfermedades Neuroinflamatorias/metabolismo , Dieta Baja en Carbohidratos , Ayuno/metabolismo , Metabolismo Energético/fisiología , Encéfalo/metabolismo
2.
Arch Microbiol ; 205(4): 134, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36959516

RESUMEN

The present study aimed to evaluate the potential and specificity of the inflammatory and antioxidant response of Microbe-Associated Molecular Patterns (MAMPs) in NIH-3T3 fibroblast cells, as well as in the healing process of skin wounds. Cells (NIH-3T3) were cultivated in supplemented specific medium. NIH-3T3 cells were treated with MAMPs (Bifidobacterium lactis or Lactobacillus casei or Lactobacillus gasseri or Lactobacillus paracasei or Streptococcus thermophilus), at two concentrations and insulted with LPS or H2O2. Cell viability, myeloperoxidase activity, nitrite/nitrate, oxidative damage and inflammatory parameters were measured. In addition, scratch assay was performed. Significant scratch closure was observed after 24 h and 48 h, and the effect of 0.1 g/mL MAMPs on wound healing was found to be highly statistically significant. In the viability cellular assay, Lactobacillus showed better response in 0.1 g/mL dose, whereas B. lactis and S. thermophilus showed better response in 0.01 g/mL dose. There was reduction in IL-6 and IL-1ß levels in all treatments insulted with LPS. MAMP's showed preventive efficacy in reducing the effects caused by LPS. The MAMP's action in decreasing the production of ROS, inflammatory activity and increasing cell viability, besides significant cell proliferation during wound healing processes suggests remodeling mechanisms and new possibilities for wound healing.


Asunto(s)
Peróxido de Hidrógeno , Repitelización , Ratones , Animales , Células 3T3 NIH , Peróxido de Hidrógeno/farmacología , Lipopolisacáridos , Cicatrización de Heridas/fisiología , Estrés Oxidativo , Antioxidantes/farmacología
3.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36724248

RESUMEN

AIMS: The protective effects of Bacillus amyloliquefaciens(CCT7935), Bacillus subtilis(CCT7935), Bacillus licheniformis (CCT 7836), and Bacillus coagulans (CCT 0199) against lipopolysaccharide (LPS)-induced intestinal inflammation were investigated. METHODS AND RESULTS: Male Swiss mice were assigned into six groups: control group, LPS group, LPS + B. subtilis (CCT7935) group, LPS +   B. licheniformis (CCT 7836) group, LPS +   B. amyloliquefaciens (CCT7935) group, and LPS   + B. coagulans (CCT 0199) group. Each mouse of the groups Bacillus received 1 × 109 colony-forming units of Bacillus once daily by oral gavage during 30 days. Twenty-four hours after the last dose of Bacillus, all groups, except the control group, were intraperitoneally injected with LPS in the single dose of 15 mg kg-1. The mice were euthanized 24 h after the LPS administration. Histological alterations, myeloperoxidase activity, and nitrite levels were analyzed in the gut of mice and the inflammatory cytokines were analyzed in the gut and in the blood. The results demonstrate that the mice challenged with LPS presented the villi shortened and damaged, which were significantly protected by B. coagulans and B. amyloliquefaciens. Furthermore, all Bacillus tested were effective in preventing against the increase of myeloperoxidase activity, while B. amyloliquefaciens and B. subtilis prevented the increase of nitrite and IL-1ß levels in the gut of mice induced with LPS was decreased only B. subtilis. LPS also elevated the IL-1 ß, IL-6, and IL-10 levels in the blood, and these alterations were significantly suppressed by Bacillus, especially by B. subtilis. CONCLUSIONS: The study suggests that the Bacillus investigated in this study might be effective therapeutic agents for preventing intestinal inflammation, because they decrease the inflammatory process an protect against tissue damage.


Asunto(s)
Bacillus , Probióticos , Animales , Ratones , Masculino , Lipopolisacáridos , Peroxidasa , Nitritos , Probióticos/farmacología , Inflamación/inducido químicamente , Inflamación/prevención & control
4.
Metab Brain Dis ; 38(5): 1573-1579, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36897514

RESUMEN

Maple Syrup Urine Disease (MSUD) is an autosomal recessive inborn error of metabolism (IEM), responsible for the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, in addition to their α-keto acids α-ketoisocaproic acid (KIC), α-keto-ß-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) in the plasma and urine of patients. This process occurs due to a partial or total blockage of the dehydrogenase enzyme activity of branched-chain α-keto acids. Oxidative stress and inflammation are conditions commonly observed on IEM, and the inflammatory response may play an essential role in the pathophysiology of MSUD. We aimed to investigate the acute effect of intracerebroventricular (ICV) administration of KIC on inflammatory parameters in young Wistar rats. For this, sixteen 30-day-old male Wistar rats receive ICV microinjection with 8 µmol KIC. Sixty minutes later, the animals were euthanized, and the cerebral cortex, hippocampus, and striatum structures were collected to assess the levels of pro-inflammatory cytokines (INF-γ; TNF-α, IL-1ß). The acute ICV administration of KIC increased INF-γ levels in the cerebral cortex and reduced the levels of INF-γ and TNF-α in the hippocampus. There was no difference in IL-1ß levels. KIC was related to changes in the levels of pro-inflammatory cytokines in the brain of rats. However, the inflammatory mechanisms involved in MSUD are poorly understood. Thus, studies that aim to unravel the neuroinflammation in this pathology are essential to understand the pathophysiology of this IEM.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , Factor de Necrosis Tumoral alfa , Ratas , Animales , Masculino , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo , Estrés Oxidativo , Cetoácidos/farmacología , Enfermedad de la Orina de Jarabe de Arce/tratamiento farmacológico , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo
5.
Int J Cosmet Sci ; 45(5): 572-580, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36862071

RESUMEN

OBJECTIVE: The microbiome plays an important role in a wide variety of skin disorders. Hence, dysbiosis in the skin and/or gut microbiome is associated with an altered immune response, promoting the development of skin diseases, such as atopic dermatitis, psoriasis, acne vulgaris and dandruff. Studies have shown that paraprobiotics may be promising for the treatment of skin disorders through microbiota modulation and immunomodulation. So, the objective is to develop an anti-dandruff formulation using a paraprobiotic (Neoimuno) as active ingredient. METHODS: Randomized, double-blind, placebo-controlled clinical trial was performed in patients who had any degree of dandruff. A total of 33 volunteers were recruited and randomly divided into two groups: placebo or treated. (1% Neoimuno). The ingredient used was Neoimuno (Bifidobacterium lactis strain CCT 7858). Combability analysis and perception questionnaire were applied before and after treatment. Statistical analyses were performed. RESULTS: No adverse effects were reported by patients throughout the study. Through the combability analysis, a significant decrease in the number of particles was verified after 28 days of shampoo use. Regarding perception, there was a significant difference for the cleaning variables and improvement of the general appearance 28 days after the intervention. There were no significant differences for the itching and scaling parameters, as well as the perception parameters at 14 days. DISCUSSION: Topical application of the paraprobiotic shampoo containing 1% Neoimuno was able to significantly improve the feeling of cleanliness and general aspects of dandruff, in addition to reducing scalp flakiness. Thus, with the results obtained through the clinical trial, Neoimuno presents itself as a natural, safe and effective ingredient in the treatment of dandruff. The efficacy of Neoimuno in dandruff was visible within 4 weeks.


OBJECTIF: Le microbiome joue un rôle important dans une grande variété de troubles cutanés. Ainsi, la dysbiose du microbiome cutané et/ou intestinal est associée à une réponse immunitaire altérée, favorisant le développement de maladies cutanées, telles que la dermatite atopique, le psoriasis, l'acné vulgaire et les pellicules. Des études ont montré que les paraprobiotiques peuvent être prometteurs pour le traitement des troubles cutanés par la modulation du microbiote et l'immunomodulation. Ainsi, l'objectif est de développer une formulation antipelliculaire utilisant un paraprobiotique (Neoimuno) comme principe actif. MÉTHODES: Un essai clinique randomisé, en double aveugle et contrôlé par placebo a été réalisé chez des patients présentant des pellicules de n'importe quel degré. Au total, 33 volontaires ont été recrutés et divisés au hasard en deux groupes: placebo ou traité. (1% Neoimuno). L'ingrédient utilisé était le Neoimuno (souche Bifidobacterium lactis CCT 7858). Une analyse de combabilité et un questionnaire de perception ont été appliqués avant et après le traitement. Des analyses statistiques ont été effectuées. RÉSULTATS: Aucun effet indésirable n'a été signalé par les patients tout au long de l'étude. Grâce à l'analyse de combabilité, une diminution significative du nombre de particules a été vérifiée après 28 jours d'utilization du shampooing. Concernant la perception, il y avait une différence significative pour les variables de nettoyage et d'amélioration de l'aspect général 28 jours après l'intervention. Il n'y avait pas de différences significatives pour les paramètres de démangeaison et de desquamation, ainsi que les paramètres de perception à 14 jours. DISCUSSION: L'application topique du shampooing paraprobiotique contenant 1% de Neoimuno a pu améliorer significativement la sensation de propreté et les aspects généraux des pellicules, en plus de réduire la desquamation du cuir chevelu. Ainsi, avec les résultats obtenus grâce à l'essai clinique, Neoimuno se présente comme un ingrédient naturel, sûr et efficace dans le traitement des pellicules. L'efficacité de Neoimuno sur les pellicules a été visible en 4 semaines.


Asunto(s)
Bifidobacterium animalis , Caspa , Preparaciones para el Cabello , Humanos , Caspa/tratamiento farmacológico , Cuero Cabelludo , Piel , Prurito , Preparaciones para el Cabello/uso terapéutico
6.
J Neuroinflammation ; 19(1): 268, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333747

RESUMEN

The pathophysiology of sepsis may involve the activation of the NOD-type receptor containing the pyrin-3 domain (NLPR-3), mitochondrial and oxidative damages. One of the primary essential oxidation products is 8-oxoguanine (8-oxoG), and its accumulation in mitochondrial DNA (mtDNA) induces cell dysfunction and death, leading to the hypothesis that mtDNA integrity is crucial for maintaining neuronal function during sepsis. In sepsis, the modulation of NLRP-3 activation is critical, and mefenamic acid (MFA) is a potent drug that can reduce inflammasome activity, attenuating the acute cerebral inflammatory process. Thus, this study aimed to evaluate the administration of MFA and its implications for the reduction of inflammatory parameters and mitochondrial damage in animals submitted to polymicrobial sepsis. To test our hypothesis, adult male Wistar rats were submitted to the cecal ligation and perforation (CLP) model for sepsis induction and after receiving an injection of MFA (doses of 10, 30, and 50 mg/kg) or sterile saline (1 mL/kg). At 24 h after sepsis induction, the frontal cortex and hippocampus were dissected to analyze the levels of TNF-α, IL-1ß, and IL-18; oxidative damage (thiobarbituric acid reactive substances (TBARS), carbonyl, and DCF-DA (oxidative parameters); protein expression (mitochondrial transcription factor A (TFAM), NLRP-3, 8-oxoG; Bax, Bcl-2 and (ionized calcium-binding adaptor molecule 1 (IBA-1)); and the activity of mitochondrial respiratory chain complexes. It was observed that the septic group in both structures studied showed an increase in proinflammatory cytokines mediated by increased activity in NLRP-3, with more significant oxidative damage and higher production of reactive oxygen species (ROS) by mitochondria. Damage to mtDNA it was also observed with an increase in 8-oxoG levels and lower levels of TFAM and NGF-1. In addition, this group had an increase in pro-apoptotic proteins and IBA-1 positive cells. However, MFA at doses of 30 and 50 mg/kg decreased inflammasome activity, reduced levels of cytokines and oxidative damage, increased bioenergetic efficacy and reduced production of ROS and 8-oxoG, and increased levels of TFAM, NGF-1, Bcl-2, reducing microglial activation. As a result, it is suggested that MFA induces protection in the central nervous system early after the onset of sepsis.


Asunto(s)
Ácido Mefenámico , Sepsis , Animales , Ratas , Masculino , Especies Reactivas de Oxígeno/metabolismo , Ácido Mefenámico/metabolismo , Ácido Mefenámico/farmacología , Ratas Wistar , Inflamasomas/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Mitocondrias , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , ADN Mitocondrial , Citocinas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
7.
Neurochem Res ; 47(3): 613-621, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34674138

RESUMEN

Critical illness encompasses a wide spectrum of life-threatening clinical conditions requiring intensive care. Our objective was to evaluate cognitive, inflammatory and cellular metabolism alterations in the central nervous system in an animal model of critical illness induced by zymosan. For this Wistar rats that were divided into Sham and zymosan. Zymozan was administered once intraperitoneally (30 g/100 g body weight) diluted in mineral oil. The animals were submitted to behavioral tests of octagonal maze, inhibitory avoidance and elevated plus maze. Brain structures (cortex, prefrontal and hippocampus) were removed at 24 h, 4, 7 and 15 days after zymosan administration for analysis of cytokine levels (TNF-α, IL-1b, IL-6 and IL-10), oxidative damage and oxygen consumption. Zymosan-treated animals presented mild cognitive impairment both in aversive (inhibitory avoidance) and non-aversive (octagonal maze) tasks by day 15. However, they did not show increase in anxiety (elevated-plus maze). The first neurochemical alteration found was an increase in brain pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) at day 4th in the hippocampus. In cortex, a late (7 and 15 days) increase in TNF-α was also noted, while the anti-inflammatory cytokine IL-10 decrease from 4 to 15 days. Oxygen consumption was decreased in the hippocampus and pre-frontal, but not cortex, only at 7 days. Additionally, it was observed a late (15 days) increase in oxidative damage parameters. This characterization of brain dysfunction in rodent model of critical illness reproduces some of the alterations reported in humans such neuropsychiatric disorders, especially depression, memory loss and cognitive changes and can add to the nowadays used models.


Asunto(s)
Disfunción Cognitiva , Enfermedad Crítica , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Roedores
8.
Curr Microbiol ; 79(1): 9, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34905100

RESUMEN

The discovery of the potential of paraprobiotics to exert different immunological benefits suggests that further studies should be carried out to determine their potential and mechanisms of action in modulating the immune system. The objective of this study was to investigate the immune response of several microbial-associated molecular patterns (MAMPS) used at different doses in macrophage cell lines RAW-264.7 stimulated with lipopolysaccharide (LPS). Two experiments were conducted. The first was performed to determine a dose response curve for each paraprobiotic (Bifidobacterium lactis, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus paracasei, and Streptococcus thermophilus). Further experiments were carried using only two doses (0.01 g/ml and 0.1 g/ml). RAW-264.7 cells were cultivated in Dubelcco's Modified Eagle's medium supplemented with fetal bovine serum and penicillin/streptomycin. Cells were incubated with LPS (1 µg/ml) and six concentrations of MAMPs were added. RAW-264.7 viability, myeloperoxidase activity, nitrite/nitrate concentration, reactive oxygen species production, oxidative damage, and inflammatory parameters were measured. In the LPS group, there was a significant reduction in cell viability. Myeloperoxidase and nitrite/nitrate concentrations demonstrated a better effect at 0.01 and 0.1 g/ml doses. There was a significant reduction in interleukin-6 (IL-6) levels at 0.1 g/ml dose in all paraprobiotics. IL-10 levels decreased in the LPS group and increased at 0.1 g/ml dose in all paraprobiotics. The dichlorofluorescin diacetate results were reinforced by the observed in oxidative damage. Paraprobiotics are likely to contribute to the improvement of intestinal homeostasis, immunomodulation, and host metabolism.


Asunto(s)
Lacticaseibacillus casei , Lipopolisacáridos , Bifidobacterium , Inmunidad , Inmunomodulación , Macrófagos , Streptococcus
9.
J Cell Mol Med ; 24(1): 88-97, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31654493

RESUMEN

We aim to characterize the kinetics of early and late microglial phenotypes after systemic inflammation in an animal model of severe sepsis and the effects of minocycline on these phenotypes. Rats were subjected to CLP, and some animals were treated with minocycline (10 ug/kg) by i.c.v. administration. Animals were killed 24 hours, 5, 10 and 30 days after sepsis induction, and serum and hippocampus were collected for subsequent analyses. Real-time PCR was performed for M1 and M2 markers. TNF-α, IL-1ß, IL-6, IL-10, CCL-22 and nitrite/nitrate levels were measured. Immunofluorescence for IBA-1, CD11b and arginase was also performed. We demonstrated that early after sepsis, there was a preponderant up-regulation of M1 markers, and this was not switched to M2 phenotype markers later on. We found that up-regulation of both M1 and M2 markers co-existed up to 30 days after sepsis induction. In addition, minocycline induced a down-regulation, predominantly, of M1 markers. Our results suggest early activation of M1 microglia that is followed by an overlap of both M1 and M2 phenotypes and that the beneficial effects of minocycline on sepsis-associated brain dysfunction may be related to its effects predominantly on the M1 phenotype.


Asunto(s)
Citocinas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/patología , Inflamación/patología , Microglía/patología , Sepsis/patología , Animales , Hipocampo/metabolismo , Inflamación/metabolismo , Masculino , Microglía/metabolismo , Fenotipo , Ratas , Ratas Wistar , Sepsis/metabolismo
10.
Clin Sci (Lond) ; 134(7): 765-776, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32219335

RESUMEN

BACKGROUND: In order to modulate microglial phenotypes in vivo, M1 microglia were depleted by administration of gadolinium chloride and the expression of M2 microglia was induced by IL-4 administration in an animal model of sepsis to better characterize the role of microglial phenotypes in sepsis-induced brain dysfunction. METHODS: Wistar rats were submitted to sham or cecal ligation and perforation (CLP) and treated with IL-4 or GdCl3. Animals were submitted to behavioral tests 10 days after surgery. In a separated cohort of animals at 24 h, 3 and 10 days after surgery, hippocampus was removed and cytokine levels, M1/M2 markers and CKIP-1 levels were determined. RESULTS: Modulation of microglia by IL-4 and GdCl3 was associated with an improvement in long-term cognitive impairment. When treated with IL-4 and GdCl3, the reduction of pro-inflammatory cytokines was apparent in almost all analyzed time points. Additionally, CD11b and iNOS were increased after CLP at all time points, and both IL-4 and GdCl3 treatments were able to reverse this. There was a significant decrease in CD11b gene expression in the CLP+GdCl3 group. IL-4 treatment was able to decrease iNOS expression after sepsis. Furthermore, there was an increase of CKIP-1 in the hippocampus of GdCl3 and IL-4 treated animals 10 days after CLP induction. CONCLUSIONS: GdCl3 and IL-4 are able to manipulate microglial phenotype in an animal models of sepsis, by increasing the polarization toward an M2 phenotype IL-4 and GdCl3 treatment was associated with decreased brain inflammation and functional recovery.


Asunto(s)
Antiinflamatorios/farmacología , Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos , Disfunción Cognitiva/prevención & control , Encefalitis/prevención & control , Gadolinio/farmacología , Hipocampo/efectos de los fármacos , Interleucina-4/farmacología , Microglía/efectos de los fármacos , Sepsis/tratamiento farmacológico , Animales , Antígeno CD11b/metabolismo , Proteínas Portadoras/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/metabolismo , Encefalitis/patología , Encefalitis/fisiopatología , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Mediadores de Inflamación/metabolismo , Microglía/metabolismo , Microglía/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenotipo , Ratas Wistar , Sepsis/metabolismo , Sepsis/patología , Sepsis/fisiopatología , Factores de Tiempo
11.
Metab Brain Dis ; 35(2): 295-303, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31828693

RESUMEN

Tyrosinemia type II is an autosomal recessive inborn error of metabolism caused by hepatic cytosolic tyrosine aminotransferase deficiency. Importantly, this disease is associated with neurological and developmental abnormalities in many patients. Considering that the mechanisms underlying neurological dysfunction in hypertyrosinemic patients are poorly understood, in the present work we investigated the levels of cytokines - tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-10 - in cerebellum, hippocampus, striatum of young rats exposed to chronic administration of L-tyrosine. In addition, we also investigated the impact of the supplementation with Omega-3 fatty acids (n-3 PUFA) on the rodent model of Tyrosinemia. Notably, previous study demonstrated an association between L-tyrosine toxicity and n-3 PUFA deficiency. Our results showed a significant increase in the levels of pro- and anti-inflammatory cytokines in brain structures when animals were administered with L-tyrosine. Cerebral cortex and striatum seem to be more susceptible to the inflammation induced by tyrosine toxicity. Importantly, n-3 PUFA supplementation attenuated the alterations on cytokines levels induced by tyrosine exposure in brain regions of infant rats. In conclusion, the brain inflammation is also an important process related to tyrosine neurotoxicity observed in the experimental model of Tyrosinemia. Finally, n-3 PUFA supplementation could be considered as a potential neuroprotective adjunctive therapy for Tyrosinemias, especially type II.


Asunto(s)
Suplementos Dietéticos , Encefalitis/inducido químicamente , Encefalitis/tratamiento farmacológico , Ácidos Grasos Omega-3/administración & dosificación , Mediadores de Inflamación/antagonistas & inhibidores , Tirosina/toxicidad , Animales , Animales Recién Nacidos , Esquema de Medicación , Encefalitis/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Tirosina/administración & dosificación
12.
An Acad Bras Cienc ; 92(4): e20191311, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33237137

RESUMEN

Taurine (Tau) is an abundant amino acid in polymorphonuclear leukocytes that react with hypochlorous acid to form taurine chloramine (TauCl) under inflammatory conditions. We investigated potential interactions between lymphocytes and TauCl in rats submitted to cecal ligation. Animals were divided into sham or CLP groups (24 or 120 h) to isolate lymphocytes from blood and spleen. Lymphocytes were cultured at a concentration of 1×106 cells/mL and activated by concanavalin A. Tau and TauCl were added at 1, 10, and 100 µM. Cells were incubated with MTT to evaluate cell viability and cytokine concentration in the supernatant was determined. TauCl decreased lymphocyte viability and altered the secretion pattern of important inflammatory mediators in non-specific-phenotype manner. The effort to a is elucidate mechanisms of immune cell (dys)function in sepsis is important to better understand the complex regulation of immune system during sepsis development, and further studies are necessary to confirm TauCl as potential target in this context.


Asunto(s)
Sepsis , Bazo , Animales , Supervivencia Celular , Células Cultivadas , Citocinas , Linfocitos , Ratas , Taurina/análogos & derivados , Taurina/farmacología
13.
An Acad Bras Cienc ; 92(4): e20190925, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33295575

RESUMEN

Ammonia is involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy. Few is known about the effects of gestational exposition to ammonia in the developing brain, and the possible long-term consequences of such exposure. We aimed to evaluate the effects of ammonia exposure during the gestation and the possible long-term cognitive alterations on pups. Eight female rats were divided into two groups: (1) control (saline solution); (2) ammonia (ammonium acetate, 2,5mmol/Kg). Each rat received a single subcutaneous injection during all gestational period. The brains from 1-day-old rats were obtained to the determination of thiobarbituric acid reactive species (TBARS), protein carbonyl and nitrite/nitrate levels. Some animals were followed 30 days after delivery and were subjected to the step-down inhibitory avoidance task. It was observed a significant increase in protein carbonyl, but not TBARS or nitrite/nitrate levels, in pups exposed to ammonia. Rats exposed to ammonia presented long-term cognitive impairment. Gestational exposition to ammonia induces protein oxidative damage in the neonatal rat brain, and long-term cognitive impairment.


Asunto(s)
Amoníaco , Encéfalo , Amoníaco/toxicidad , Animales , Cognición , Estrés Oxidativo , Embarazo , Ratas , Ratas Wistar
14.
J Biol Chem ; 293(1): 226-244, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29127203

RESUMEN

Patients recovering from sepsis have higher rates of CNS morbidities associated with long-lasting impairment of cognitive functions, including neurodegenerative diseases. However, the molecular etiology of these sepsis-induced impairments is unclear. Here, we investigated the role of the receptor for advanced glycation end products (RAGE) in neuroinflammation, neurodegeneration-associated changes, and cognitive dysfunction arising after sepsis recovery. Adult Wistar rats underwent cecal ligation and perforation (CLP), and serum and brain (hippocampus and prefrontal cortex) samples were obtained at days 1, 15, and 30 after the CLP. We examined these samples for systemic and brain inflammation; amyloid-ß peptide (Aß) and Ser-202-phosphorylated Tau (p-TauSer-202) levels; and RAGE, RAGE ligands, and RAGE intracellular signaling. Serum markers associated with the acute proinflammatory phase of sepsis (TNFα, IL-1ß, and IL-6) rapidly increased and then progressively decreased during the 30-day period post-CLP, concomitant with a progressive increase in RAGE ligands (S100B, Nϵ-[carboxymethyl]lysine, HSP70, and HMGB1). In the brain, levels of RAGE and Toll-like receptor 4, glial fibrillary acidic protein and neuronal nitric-oxide synthase, and Aß and p-TauSer-202 also increased during that time. Of note, intracerebral injection of RAGE antibody into the hippocampus at days 15, 17, and 19 post-CLP reduced Aß and p-TauSer-202 accumulation, Akt/mechanistic target of rapamycin signaling, levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and behavioral deficits associated with cognitive decline. These results indicate that brain RAGE is an essential factor in the pathogenesis of neurological disorders following acute systemic inflammation.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Cognición/fisiología , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Inflamación/metabolismo , Masculino , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Fosforilación , Ratas , Ratas Wistar , Sepsis/complicaciones , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas tau/metabolismo
15.
Clin Sci (Lond) ; 133(18): 1993-2004, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31527095

RESUMEN

Background: Several different mechanisms have been proposed to explain long-term cognitive impairment in sepsis survivors. The role of persisting mitochondrial dysfunction is not known. We thus sought to determine whether stimulation of mitochondrial dynamics improves mitochondrial function and long-term cognitive impairment in an experimental model of sepsis.Methods: Sepsis was induced in adult Wistar rats by cecal ligation and perforation (CLP). Animals received intracerebroventricular injections of either rosiglitazone (biogenesis activator), rilmenidine, rapamycin (autophagy activators), or n-saline (sham control) once a day on days 7-9 after the septic insult. Cognitive impairment was assessed by inhibitory avoidance and object recognition tests. Animals were killed 24 h, 3 and 10 days after sepsis with the hippocampus and prefrontal cortex removed to determine mitochondrial function.Results: Sepsis was associated with both acute (24 h) and late (10 days) brain mitochondrial dysfunction. Markers of mitochondrial biogenesis, autophagy and mitophagy were not up-regulated during these time points. Activation of biogenesis (rosiglitazone) or autophagy (rapamycin and rilmenidine) improved brain ATP levels and ex vivo oxygen consumption and the long-term cognitive impairment observed in sepsis survivors.Conclusion: Long-term impairment of brain function is temporally related to mitochondrial dysfunction. Activators of autophagy and mitochondrial biogenesis could rescue animals from cognitive impairment.


Asunto(s)
Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/patología , Mitocondrias/patología , Sepsis/complicaciones , Sepsis/patología , Animales , Autofagia/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Ratas Wistar , Rilmenidina/farmacología , Rosiglitazona/farmacología , Sirolimus/farmacología , Análisis de Supervivencia , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
16.
J Geriatr Psychiatry Neurol ; 32(3): 119-136, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30852930

RESUMEN

Delirium is a serious and common disorder that affects up to 80% of acutely ill patients, mainly the aged. In recent years, several studies pointed out possible biomarkers that could be used alone or in combination with other resources in the diagnosis and follow-up of critically ill patients who develop delirium. In this context, a systematic review was conducted to determine the predictive value of several biomarkers in acutely (critically and noncritically) ill adult patients with delirium. Studies that used the confusion assessment method (CAM) and CAM-intensive care unit as the diagnostic method were considered. The most recent search was performed in November 2017. There was no language restriction. Initially, 626 articles were screened and 39 were included in the study. A comprehensive evaluation of the abstracts resulted in the exclusion of 202 studies, leaving 39 articles as potentially relevant. Inflammatory markers, S100ß and cortisol, could predict delirium occurrence in a specific subgroup population of critically ill patients.


Asunto(s)
Biomarcadores/química , Delirio/diagnóstico , Enfermedad Aguda , Adulto , Anciano , Enfermedad Crítica , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Biochim Biophys Acta Mol Basis Dis ; 1864(2): 454-463, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29079519

RESUMEN

During chronic limb ischemia, oxidative damage and inflammation are described. Besides oxidative damage, the decrease of tissue oxygen levels is followed by several adaptive responses. The purpose of this study was to determine whether supplementation with N-acetylcysteine (NAC) is effective in an animal model of chronic limb ischemia. Chronic limb ischemia was induced and animals were treated once a day for 30 consecutive days with NAC (30mg/kg). After this time clinical scores were recorded and soleus muscle was isolated and lactate levels, oxidative damage and inflammatory parameters were determined. In addition, several mechanisms associated with hypoxia adaptation were measured (vascular endothelial growth factor - VEGF and hypoxia inducible factor - HIF levels, ex vivo oxygen consumption, markers of autophagy/mitophagy, and mitochondrial biogenesis). The adaptation to chronic ischemia in this model included an increase in muscle VEGF and HIF levels, and NAC was able to decrease VEGF, but not HIF levels. In addition, ex vivo oxygen consumption under hypoxia was increased in muscle from ischemic animals, and NAC was able to decrease this parameter. This effect was not mediated by a direct effect of NAC on oxygen consumption. Ischemia was followed by a significant increase in muscle myeloperoxidase activity, as well as interleukin-6 and thiobarbituric acid reactive substances species levels. Supplementation with NAC was able to attenuate inflammatory and oxidative damage parameters, and improve clinical scores. In conclusion, NAC treatment decreases oxidative damage and inflammation, and modulates oxygen consumption under hypoxic conditions in a model of chronic limb ischemia.


Asunto(s)
Acetilcisteína/farmacología , Miembro Posterior/patología , Isquemia/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación , Interleucina-6/metabolismo , Isquemia/metabolismo , Ácido Láctico/metabolismo , Masculino , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Estrés Oxidativo , Oxígeno/química , Oxígeno/metabolismo , Consumo de Oxígeno , Peroxidasa/metabolismo , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Metab Brain Dis ; 32(5): 1507-1518, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28550500

RESUMEN

Maple Syrup Urine Disease (MSUD) is biochemically characterized by elevated levels of leucine, isoleucine and valine, as well as their corresponding transaminated branched-chain α-keto acids in tissue and biological fluids. Neurological symptoms and cerebral abnormalities, whose mechanisms are still unknown, are typical of this metabolic disorder. In the present study, we evaluated the early effects (1 h after injection) and long-term effects (15 days after injection) of a single intracerebroventricular administration of α-ketoisocaproic acid (KIC) on oxidative stress parameters and cognitive and noncognitive behaviors. Our results showed that KIC induced early and long-term effects; we found an increase in TBARS levels, protein carbonyl content and DNA damage in the hippocampus, striatum and cerebral cortex both one hour and 15 days after KIC administration. Moreover, SOD activity increased in the hippocampus and striatum one hour after injection, whereas after 15 days, SOD activity decreased only in the striatum. On the other hand, KIC significantly decreased CAT activity in the striatum one hour after injection, but 15 days after KIC administration, we found a decrease in CAT activity in the hippocampus and striatum. Finally, we showed that long-term cognitive deficits follow the oxidative damage; KIC induced impaired habituation memory and long-term memory impairment. From the biochemical and behavioral findings, it we presume that KIC provokes oxidative damage, and the persistence of brain oxidative stress is associated with long-term memory impairment and prepulse inhibition.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cognición/efectos de los fármacos , Cetoácidos/administración & dosificación , Cetoácidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Catalasa/metabolismo , Inyecciones Intraventriculares , Masculino , Enfermedad de la Orina de Jarabe de Arce/psicología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/psicología , Carbonilación Proteica , Ratas , Ratas Wistar , Reflejo de Sobresalto/efectos de los fármacos , Superóxido Dismutasa-1/metabolismo , Natación/psicología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
19.
Metab Brain Dis ; 32(2): 519-528, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27987060

RESUMEN

Studies have shown that oxidative stress is involved in the pathophysiology of bipolar disorder (BD). It is suggested that omega-3 (ω3) fatty acids are fundamental to maintaining the functional integrity of the central nervous system. The animal model used in this study displayed fenproporex-induced hyperactivity, a symptom similar to manic BD. Our results showed that the administration of fenproporex, in the prevent treatment protocol, increased lipid peroxidation in the prefrontal cortex (143%), hippocampus (58%) and striatum (181%), and ω3 fatty acids alone prevented this change in the prefrontal cortex and hippocampus, whereas the co-administration of ω3 fatty acids with VPA prevented the lipoperoxidation in all analyzed brain areas, and the co-administration of ω3 fatty acids with Li prevented this increase only in the prefrontal cortex and striatum. Moreover, superoxide dismutase (SOD) activity was decreased in the striatum (54%) in the prevention treatment, and the administration of ω3 fatty acids alone or in combination with Li and VPA partially prevented this inhibition. On the other hand, in the reversal treatment protocol, the administration of fenproporex increased carbonyl content in the prefrontal cortex (25%), hippocampus (114%) and striatum (91%), and in prefrontal coxter the administration of ω3 fatty acids alone or in combination with Li and VPA reversed this change, whereas in the hippocampus and striatum only ω3 fatty acids alone or in combination with VPA reversed this effect. Additionally, the administration of fenproporex resulted in a marked increase of TBARS in the hippocampus and striatum, and ω3 fatty acids alone or in combination with Li and VPA reversed this change. Finally, fenproporex administration decreased SOD activity in the prefrontal cortex (85%), hippocampus (52%) and striatum (76%), and the ω3 fatty acids in combination with VPA reversed this change in the prefrontal cortex and striatum, while the co-administration of ω3 fatty acids with Li reversed this inhibition in the hippocampus and striatum. In conclusion, our results support other studies showing the importance of ω3 fatty acids in the brain and the potential for these fatty acids to aid in the treatment of BD.


Asunto(s)
Anfetaminas/toxicidad , Antimaníacos/uso terapéutico , Depresores del Apetito/toxicidad , Conducta Animal/efectos de los fármacos , Ácidos Grasos Omega-3/uso terapéutico , Hipercinesia/psicología , Estrés Oxidativo/efectos de los fármacos , Animales , Química Encefálica/efectos de los fármacos , Hipercinesia/inducido químicamente , Hipercinesia/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Carbonato de Litio/uso terapéutico , Masculino , Carbonilación Proteica/efectos de los fármacos , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Ácido Valproico/uso terapéutico
20.
Metab Brain Dis ; 31(6): 1381-1390, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27389247

RESUMEN

Galactosemia is a disorder of galactose metabolism, leading to the accumulation of this carbohydrate. Galactosemic patients present brain and liver damage. For evaluated oxidative stress, 30-day-old males Wistar rats were divided into two groups: galactose group, that received a single injection of this carbohydrate (5 µmol/g), and control group, that received saline 0.9 % in the same conditions. One, twelve or twenty-four hours after the administration, animals were euthanized and cerebral cortex, cerebellum, and liver were isolated. After one hour, it was found a significant increase in TBA-RS levels, nitrate and nitrite and protein carbonyl contents in cerebral cortex, as well as protein carbonyl content in the cerebellum and in hepatic level of TBA-RS, and a significant decrease in nitrate and nitrite contents in cerebellum. TBA-RS levels were also found increased in all studied tissues, as well as nitrate and nitrite contents in cerebral cortex and cerebellum, that also present increased protein carbonyl content and impairments in the activity of antioxidant enzymes of rats euthanized at twelve hours. Finally, animals euthanized after twenty-four hours present an increase of TBA-RS levels in studied tissues, as well as the protein carbonyl content in cerebellum and liver. These animals also present an increased nitrate and nitrite content and impairment of antioxidant enzymes activities. Taken together, our data suggest that acute galactose administration impairs redox homeostasis in brain and liver of rats.


Asunto(s)
Encéfalo/metabolismo , Galactosemias/metabolismo , Hígado/metabolismo , Estrés Oxidativo/fisiología , Animales , Animales Recién Nacidos , Encéfalo/patología , Galactosemias/patología , Hígado/patología , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda