Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 130(26): 263801, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37450823

RESUMEN

Topological effects in photonic non-Hermitian systems have recently led to extraordinary discoveries including nonreciprocal lasing, topological insulator lasers, and topological metamaterials, to mention a few. These effects, although realized in non-Hermitian systems, are all stemming from their Hermitian components. Here we experimentally demonstrate the topological skin effect and boundary sensitivity, induced by the imaginary gauge field in a two-dimensional laser array, which are fundamentally different from any Hermitian topological effects and intrinsic to open systems. By selectively and asymmetrically injecting gain into the system, we have synthesized an imaginary gauge field on chip, which can be flexibly reconfigured on demand. We show not only that the non-Hermitian topological features remain intact in a nonlinear nonequilibrium system, but also that they can be harnessed to enable persistent phase locking with intensity morphing. Our work lays the foundation for a dynamically reconfigurable on-chip coherent system with robust scalability, attractive for building high-brightness sources with arbitrary intensity profiles.


Asunto(s)
Rayos Láser , Fotones
2.
Opt Express ; 27(16): 22429-22438, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510537

RESUMEN

We propose to use a continuous supersymmetric (SUSY) transformation of a dielectric permittivity profile in order to design a photonic mode sorter. The iso-spectrality of the SUSY transformation ensures that modes of the waveguide preserve their propagation constants while being spatially separated. This global matching of the propagation constants, in conjunction with the adiabatic modification of the refractive index landscape along the propagation direction, results in the negligible modal cross-talk and low scattering losses in the sorter. We show that a properly optimized SUSY mode sorter outperforms a standard asymmetric Y-splitter by reducing the cross-talk by at least two orders of magnitude. Moreover, the SUSY sorter is capable of sorting either transverse-electric or transverse-magnetic polarized modes and operates in a broad range of wavelengths. At the telecommunication wavelength, the 300-µm-long SUSY sorter provides the cross-talk of -35 dB and a broad operation bandwidth. The design proposed here paves the way toward efficient signal manipulation in integrated photonic devices.

3.
Opt Lett ; 44(7): 1626-1629, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30933107

RESUMEN

Non-Hermitian systems at exceptional point (EP) degeneracy are demonstrated to be highly sensitive to environmental perturbation. Here, we propose and theoretically investigate a novel multilayered heterostructure favoring double EPs for a unique set of material parameters at which forward- and backward-reflection coefficients vanish, respectively. Such an EP heterostructure is shown to scatter off light when system parameters are perturbed away from the degeneracies due to the effect of ambient temperature and mechanical stress fluctuations. The proposed structure is conducive to manipulating optical responses for two mutually independent parameters sensing.

4.
Opt Lett ; 43(3): 607-610, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29400852

RESUMEN

It is shown that two fundamentally different phenomena, the bound states in continuum and the spectral singularity (or time-reversed spectral singularity), can occur simultaneously. This can be achieved in a rectangular core dielectric waveguide with an embedded active (or absorbing) layer. In such a system a two-dimensional bound state in a continuum is created in the plane of a waveguide cross section, and it is emitted or absorbed along the waveguide core. The idea can be used for experimental implementation of a laser or a coherent-perfect-absorber for a photonic bound state that resides in a continuous spectrum.

5.
Opt Lett ; 43(20): 4927-4930, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30320785

RESUMEN

We introduce the notion of a supercharge optical array synthesized according to supersymmetric charge operators. Starting from an arbitrary array, mathematical supersymmetry transformation can be used systematically to create a zero-energy physical state below the ground state of the super-partner array. This zero mode, which is pinned deep in the mid-gap of the corresponding supercharge array owing to the square-root spectral relationship between a supercharge and a super-Hamiltonian array, is shown to be protected because of the chiral symmetry inherent to a supercharge array. A supercharge array can be used in practical applications to design a discrete optical system of waveguides or coupled resonators where the mid-gap zero mode facilitates robust light dynamics in either spatial or time domain.

6.
Opt Lett ; 43(21): 5250, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382979

RESUMEN

This publisher's note corrects an error in the funding section of Opt. Lett.43, 3758 (2018)OPLEDP0146-959210.1364/OL.43.003758.

7.
Opt Lett ; 43(15): 3758-3761, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30067673

RESUMEN

Single-mode operation of coupled optical systems, such as optical-fiber bundles, lattices of photonic waveguides, or laser arrays, requires an efficient method to suppress unwanted super-modes. Here, we propose a systematic supersymmetry-based approach to selectively eliminate modes of such systems by decreasing their lifetime relative to the lifetime of the mode of interest. The proposed method allows to explore the opto-geometric parameters of the coupled system and to maximize the relative lifetime of a selected mode. We report a 10-fold increase in the relative lifetime of the fundamental modes of large one-dimensional coupled arrays in comparison to simple "head-to-tail" coupling geometries. The ability to select multiple supported modes in one- and two-dimensional arrays is also demonstrated.

8.
Phys Rev Lett ; 119(3): 033905, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28777619

RESUMEN

We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.

9.
Opt Lett ; 41(20): 4621-4624, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28005851

RESUMEN

A planar waveguide with an impedance boundary, composed of nonperfect metallic plates, and with passive or active dielectric filling, is considered. We show the possibility of selective mode guiding and amplification when a homogeneous pump is added to the dielectric and analyze differences in TE and TM mode propagation. Such a non-conservative system is also shown to feature exceptional points for specific and experimentally tunable parameters, which are described for a particular case of transparent dielectric.

10.
Science ; 372(6540): 403-408, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33888640

RESUMEN

The nonlinear scaling of complexity with the increased number of components in integrated photonics is a major obstacle impeding large-scale, phase-locked laser arrays. Here, we develop a higher-dimensional supersymmetry formalism for precise mode control and nonlinear power scaling. Our supersymmetric microlaser arrays feature phase-locked coherence and synchronization of all of the evanescently coupled microring lasers-collectively oscillating in the fundamental transverse supermode-which enables high-radiance, small-divergence, and single-frequency laser emission with a two-orders-of-magnitude enhancement in energy density. We also demonstrate the feasibility of structuring high-radiance vortex laser beams, which enhance the laser performance by taking full advantage of spatial degrees of freedom of light. Our approach provides a route for designing large-scale integrated photonic systems in both classical and quantum regimes.

11.
Science ; 368(6492): 760-763, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32409473

RESUMEN

The orbital angular momentum (OAM) intrinsically carried by vortex light beams holds a promise for multidimensional high-capacity data multiplexing, meeting the ever-increasing demands for information. Development of a dynamically tunable OAM light source is a critical step in the realization of OAM modulation and multiplexing. By harnessing the properties of total momentum conservation, spin-orbit interaction, and optical non-Hermitian symmetry breaking, we demonstrate an OAM-tunable vortex microlaser, providing chiral light states of variable topological charges at a single telecommunication wavelength. The scheme of the non-Hermitian-controlled chiral light emission at room temperature can be further scaled up for simultaneous multivortex emissions in a flexible manner. Our work provides a route for the development of the next generation of multidimensional OAM-spin-wavelength division multiplexing technology.

12.
Science ; 365(6458): 1163-1166, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31515392

RESUMEN

Photonic topological insulators provide a route for disorder-immune light transport, which holds promise for practical applications. Flexible reconfiguration of topological light pathways can enable high-density photonics routing, thus sustaining the growing demand for data capacity. By strategically interfacing non-Hermitian and topological physics, we demonstrate arbitrary, robust light steering in reconfigurable non-Hermitian junctions, in which chiral topological states can propagate at an interface of the gain and loss domains. Our non-Hermitian-controlled topological state can enable the dynamic control of robust transmission links of light inside the bulk, fully using the entire footprint of a photonic topological insulator.

13.
Nat Commun ; 9(1): 2674, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991729

RESUMEN

The band degeneracy, either the exceptional point of a non-Hermitian system or the Dirac point associated with a topological system, can feature distinct symmetry and topology. Their synergy will further produce more exotic topological effects in synthetic matter.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda