Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
BMC Biotechnol ; 24(1): 41, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862994

RESUMEN

BACKGROUND: Genetic diversity, population structure, agro-morphological traits, and molecular characteristics, are crucial for either preserving genetic resources or developing new cultivars. Due to climate change, water availability for agricultural use is progressively diminishing. This study used 100 molecular markers (25 TRAP, 22 SRAP, 23 ISTR, and 30 SSR). Additionally, 15 morphological characteristics were utilized to evaluate the optimal agronomic traits of 12 different barley genotypes under arid conditions. RESULTS: Substantial variations, ranging from significant to highly significant, were observed in the 15 agromorphological parameters evaluated among the 12 genotypes. The KSU-B101 barley genotype demonstrated superior performance in five specific traits: spike number per plant, 100-grain weight, spike number per square meter, harvest index, and grain yield. These results indicate its potential for achieving high yields in arid regions. The Sahrawy barley genotype exhibited the highest values across five parameters, namely leaf area, spike weight per plant, spike length, spike weight per square meter, and biological yield, making it a promising candidate for animal feed. The KSU-B105 genotype exhibited early maturity and a high grain count per spike, which reflects its early maturity and ability to produce a high number of grains per spike. This suggests its suitability for both animal feed and human food in arid areas. Based on marker data, the molecular study found that the similarity coefficients between the barley genotypes ranged from 0.48 to 0.80, with an average of 0.64. The dendrogram constructed from these data revealed three distinct clusters with a similarity coefficient of 0.80. Notably, the correlation between the dendrogram and its similarity matrix was high (0.903), indicating its accuracy in depicting the genetic relationships. The combined analysis revealed a moderate correlation between the morphological and molecular analysis, suggesting alignment between the two characterization methods. CONCLUSIONS: The morphological and molecular analyses of the 12 barley genotypes in this study effectively revealed the varied genetic characteristics of their agro-performance in arid conditions. KSU-B101, Sahrawy, and KSU-B105 have emerged as promising candidates for different agricultural applications in arid regions. Further research on these genotypes could reveal their full potential for breeding programs.


Asunto(s)
Genotipo , Hordeum , Hordeum/genética , Variación Genética , Marcadores Genéticos/genética
2.
Mol Biol Rep ; 47(10): 7843-7849, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33034882

RESUMEN

Assessment of genetic diversity is crucial for efficient selection genotypes in plant breeding and improvement programs. Studies of genetic diversity of S. persica are rare relative to the large species diversity in Saudi Arabia, despite its valuable importance as one of the most popular medicinal plants. We investigate the genetic variability and genetic differentiation among and within wild Salvadora persica populations distributed in four regions of Saudi Arabia. Twelve sequence-related amplified polymorphism (SRAP) primers combination generated 326 alleles, with an average of 27.2 alleles per primer. All primers showed 100 polymorphism percentage, and higher PIC values exceeded 0.90. Jaccard similarity values varied between 0.04 to 0.43, with an average of 0.31, which showed a weak relationship among the accessions and their origin. Based on UGPMA and principal coordinate analysis, accessions collected from the same region showed less aggregation. Genetic diversity parameters showed that both Aflaj and Joodah populations recorded the highest mean values for the effective number of alleles (1.26 and 1.24). Shannon index and genetic heterozygosity (0.23 and 0.15 for both populations), and percent of polymorphism 45.45% for Aflaj and 43.87 for Joodah population. Most of the genetic variation was because of differences within populations (77%) and 23% among populations. SRAP markers explored the genetic diversity among and within S. persica populations. In this work, genetic diversity within populations was high, and the population structure was weak. We detected no specific geographic structure, which may reveal an active movement of plants among populations.


Asunto(s)
Alelos , Filogenia , Polimorfismo Genético , Salvadoraceae/genética , Arabia Saudita
3.
Int J Mol Sci ; 15(1): 277-95, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24378852

RESUMEN

Morphological, nutritional and molecular analyses were carried out to assess genetic diversity among 35 introduced lentil genotypes (Lens culinaris Medik.). The genotypes exhibited significant differences for their field parameters and some of them showed noticeable superiority. The nutritional and proximate analysis showed that some genotypes were excellent sources of proteins, essential amino acids, minerals, anti-oxidants, total phenolic contents (TPC) and total flavonoid contents (TFC) and hence, highlights lentil nutritional and medicinal potential. Sequence-related amplified polymorphism (SRAP) and amplified fragments length polymorphism (AFLP) markers were used to estimate the genetic variability at the molecular level. The existence of a considerable amount of genetic diversity among the tested lentil genotypes was also proven at the molecular level. A total of 2894 polymorphic SRAP and 1625 AFLP loci were successfully amplified using six SRAP and four AFLP primer pair combinations. Polymorphism information content (PIC) values for SRAP and AFLP markers were higher than 0.8, indicating the power and higher resolution of those marker systems in detecting molecular diversity. UPGMA (unweighted pair group method with arithmetic average) cluster analysis based on molecular data revealed large number of sub clusters among genotypes, indicating high diversity levels. The data presented here showed that FLIP2009-64L and FLIP2009-69L could be used as a significant source of yield, total protein, essential amino acids, and antioxidant properties. The results suggest potential lentil cultivation in the central region of Saudi Arabia for its nutritional and medicinal properties, as well as sustainable soil fertility crop.


Asunto(s)
Variación Genética , Lens (Planta)/genética , Antioxidantes/química , Antioxidantes/metabolismo , Análisis por Conglomerados , Flavonoides/química , Flavonoides/metabolismo , Sitios Genéticos , Genotipo , Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/metabolismo , Fenoles/química , Fenoles/metabolismo , Arabia Saudita
4.
Int J Mol Sci ; 13(12): 16457-71, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23211669

RESUMEN

Sequence-related amplified polymorphism (SRAP) markers were used to assess the genetic diversity and relationship among 58 faba bean (Vicia faba L.) genotypes. Fourteen SRAP primer combinations amplified a total of 1036 differently sized well-resolved peaks (fragments), of which all were polymorphic with a 0.96 PIC value and discriminated all of the 58 faba bean genotypes. An average pairwise similarity of 21% was revealed among the genotypes ranging from 2% to 65%. At a similarity of 28%, UPGMA clustered the genotypes into three main groups comprising 78% of the genotypes. The local landraces and most of the Egyptian genotypes in addition to the Sudan genotypes were grouped in the first main cluster. The advanced breeding lines were scattered in the second and third main clusters with breeding lines from the ICARDA and genotypes introduced from Egypt. At a similarity of 47%, all the genotypes formed separated clusters with the exceptions of Hassawi 1 and Hassawi 2. Group analysis of the genotypes according to their geographic origin and type showed that the landraces were grouped according to their origin, while others were grouped according to their seed type. To our knowledge, this is the first application of SRAP markers for the assessment of genetic diversity in faba bean. Such information will be useful to determine optimal breeding strategies to allow continued progress in faba bean breeding.


Asunto(s)
Marcadores Genéticos , Polimorfismo Genético , Análisis de Secuencia de ADN/métodos , Vicia faba/genética , Genes de Plantas , Variación Genética , Genotipo , Técnicas de Amplificación de Ácido Nucleico/métodos , Filogenia
5.
Saudi J Biol Sci ; 29(1): 111-122, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36105270

RESUMEN

Microbial resistance and other emerging health risk problems related to the side effects of synthetic drugs are the major factors that result in the research regarding natural products. Fruits, leaves, seeds, and oils-based phyto-constituents are the most important source of pharmaceutical products. Plant extract chemistry depends largely on species, plant components, solvent utilized, and extraction technique. This study was aimed to compare the ethanolic extracts of a mangrove plant, i.e., Avicennia marina (1E: Lower half of A. marina's pneumatophores, 2E: A. marina's leaves, 3E: Upper half of A. marina's pneumatophores, and 4E: A. marina's shoots), with non-mangrove plants, i.e., Phragmites australis (5E: P. australis's shoot), and Moringa oleifera (6E: M. oleifera's leaves) for their antimicrobial activities, total phenolic contents, antioxidant activity, and cytotoxicity potential. The antimicrobial activity assays were performed on gram-positive bacteria (i.e., Bacillus subtilis and Staphylococcus aureus), gram-negative bacteria (i.e., Escherichia coli, and Pseudomonas aeruginosa), and fungi (i.e., Aspergillus niger, Candida albicans, and Rhizopus spp.). We estimated antioxidant activity by TAC, DPPH, and FRAP assays, and the cytotoxicity was evaluated by MTT assay. The results of antimicrobial activities revealed that B. subtilis was the most sensitive to the tested plant extracts compared to S. aureus, while it only showed sensitivity to 6E and Imipenem. 5E and 6E showed statistically similar results against P. aeruginosa as compared to Ceftazidime. E. coli was the most resistant bacteria against tested plant extracts. Among the tested plant extracts, maximum inhibition activity was observed by 6E against A. niger (22 ± 0.57 mm), which was statistically similar to the response of 6E against C. albicans and 3E against Rhizopus spp. 2E did not show any activity against tested fungi. We found that 6E (208.54 ± 1.92 mg g-1) contains maximum phenolic contents followed by 1E (159.42 ± 3.22 mg g-1), 5E (131.08 ± 3.10 mg g-1), 4E (i.e., 72.41 ± 2.96 mg g-1), 3E (67.41 ± 1.68 mg g-1), and 2E (48.72 ± 1.71 mg g-1). The results depict a significant positive correlation between the phenolic contents and the antioxidant activities. As a result, phenolic content may be a natural antioxidant source.

6.
Mitochondrial DNA B Resour ; 6(3): 1263-1264, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33829102

RESUMEN

Using high-throughput sequencing technology, the complete mitochondrial genome of Awassi-Jo breed (Ovis aries) was decoded. Mitochondrial genome was 16,617 bp in length. The genome contained 37 genes (13 protein-coding, 22 tRNA, and 2 rRNA) and a control region (D-loop region). The genes were encoded on the H-strand, except for the ND6 gene and 8 tRNA genes, which were encoded on the L-strand. The GC content is 38.9%. Phylogenetic analysis was performed to compare Awassi-Jo with other sheep breeds. The phylogenetic tree showed that Awassi-Jo diverged earlier than related breeds (Turkey, Italy, Germany, and Netherland) with a common ancestor in haplogroup HB. The results revealed the importance of mitochondrial data in studying sheep evolution and domestication.

7.
Plants (Basel) ; 10(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34579456

RESUMEN

Frost is one factor that causes extensive yield losses globally. A study was conducted to evaluate frost damage under field conditions and assess the genetic variation of flowers converting into pods. Diverse faba bean genotypes were evaluated under four growing seasons in a randomized complete block design: three at the University of Sydney, Narrabri, Australia (2014-2016) with three sowing dates, and one at the Agricultural Research Station, Dirab, Riyadh, Saudi Arabia (2016/2017) in one sowing. Visual methods were used to estimate frost damage and record the development of pods. Radiation frost in 2014 (Narrabri) damaged lower pods, while advection frost in 2016/2017 (Dirab) damaged upper pods. The radiation frost formed immediately above the ground; therefore, flowers and pods of taller plants minimized the damage because of their long distance from the ground. The earliest (mid-April) and middle sowing (7 May) suffered more by frost, while a delay in sowing (last week in May) led to frost escape or minor damage. The genotypes IX474/4-3 and 11NF010a-2 showed low sensitivity to frost at the vegetative and reproductive stages. Flowers developed at the beginning of flowering had a faster and higher pod formation rate (41-43%) than those formed later and contributed more to yields. Therefore, a severe frost at the beginning of flowering can cause a significant yield loss as these flowers are the most productive. The frost-tolerant genotypes, and faster and higher pod forming rates, identified in this study can be exploited to breed better varieties in the future.

8.
Biol Futur ; 72(2): 187-199, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34554472

RESUMEN

The genus Solanum exhibits a wide range of variability in morphology, flavor, and tolerance to biotic and abiotic stresses. Phenotypic and genetic variability using ISSR and RAPD markers of Solanum incanum distributed in Al-Baha province of the Kingdom of Saudi Arabia is assessed. Thirty samples are representing three different locations: Baljershy, Aqeeq, and Tohama, besides twenty-five samples representing five different commercial cultivars tested. Growth type, the number of leaves per plant, fruit size (phenotypic traits), crude protein, carbohydrates, digestive organic matter, and Mg, Ca, P were the principal contributors in the PCA. Molecular analysis showed that 114 ISSR and 80 RAPD alleles with a 100% polymorphism were recorded. The polymorphism information content (PIC) values ranged from 0.84 to 0.91 for ISSR and from 0.59 to 0.89 for RAPD data. Similarity values ranged from 0.16 to 1.00, with an average of 0.47 for ISSR and from 0.01 to 0.97, with an average of 0.36 for RAPD. It resulted in a positive and significant correlation between morphological, molecular, nutritional, and chemical analysis of fruits using Mantel analysis. UPGMA and PCA for morphological traits and molecular data discriminated commercial cultivars and wild relatives. Solanum incanum was more diverse than commercial varieties. This study revealed a wide genetic diversity among and within collected eggplant accessions and may use in breeding programs of eggplants. There is a need to increase the present eggplant collection to widen the genetic diversity of cultivated eggplant varieties in Saudi Arabia.


Asunto(s)
Solanum melongena/crecimiento & desarrollo , Solanum melongena/fisiología , Variación Genética/genética , Variación Genética/fisiología , Polimorfismo Genético/genética , Polimorfismo Genético/fisiología , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Arabia Saudita , Solanum melongena/genética
9.
Plants (Basel) ; 10(4)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916328

RESUMEN

Understanding salt tolerance in tomato (Solanum lycopersicum L.) landraces will facilitate their use in genetic improvement. The study assessed the morpho-physiological variability of Hail tomato landraces in response to different salinity levels at seedling stages and recommended a tomato salt-tolerant landrace for future breeding programs. Three tomato landraces, Hail 548, Hail 747, and Hail 1072 were tested under three salinity levels: 75, 150, and 300 mM NaCl. Salinity stress reduced shoots' fresh and dry weight by 71% and 72%, and roots were 86.5% and 78.6%, respectively. There was 22% reduced chlorophyll content, carotene content by 18.6%, and anthocyanin by 41.1%. Proline content increased for stressed treatments. The 300 mM NaCl treatment recorded the most proline content increases (67.37 mg/g fresh weight), with a percent increase in proline reaching 61.67% in Hail 747. Superoxide dismutase (SOD) activity decreased by 65% in Hail 548, while it relatively increased in Hail 747 and Hail 1072 treated with 300 mM NaCl. Catalase (CAT) activity was enhanced by salt stress in Hail 548 and recorded 7.6%, increasing at 75 and 5.1% at 300 mM NaCl. It revealed a reduction in malondialdehyde (MDA) at the 300 mM NaCl concentration in both Hail 548 and Hail 1072 landraces. Increasing salt concentrations showed a reduction in transpiration rate of 70.55%, 7.13% in stomatal conductance, and 72.34% in photosynthetic rate. K+/Na+ ratios decreased from 56% for 75 mM NaCl to 85% for 300 mM NaCl treatments in all genotypes. The response to salt stress in landraces involved some modifications in morphology, physiology, and metabolism. The landrace Hail 548 may have better protection against salt stress and observed protection against reactive oxygen species (ROS) by increasing enzymatic "antioxidants" activity under salt stress.

10.
Int J Radiat Biol ; 95(12): 1744-1751, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31486707

RESUMEN

Purpose: Inflorescence architecture is an important trait in the seed production of grain legumes. As several genes are responsible for this trait, any mutation, on these genes, may cause change in the inflorescence architecture. This study was conducted to evaluate inflorescence architecture in faba bean exposed to gamma radiation and to characterize the inflorescence architecture mutants phenotypically.Materials and methods: Faba bean M2 seeds (4898) generated from M1 generation of cultivars Hassawi 2 and ILB4347 were used in this study. M1 seeds were produced by irradiation treatments at two doses of gamma radiations (25 and 50 Gy). Faba bean M2 seeds were planted under field conditions. A total of 4032 mutant plants out of 4898 M2 seeds were evaluated for their inflorescence architecture.Results: A total of 20 determinate mutants were found and classified into four different types. Determinate type 1 was characterized by the formation of single terminal inflorescence on shoot apical meristem (SAM), type 2 by the formation of multiple inflorescences on SEM and generated upper branches that act as indeterminate type. Type 3 was characterized by the formation of a panicle-like inflorescence. While type 4 was characterized by the formation of primary and secondary panicle-like inflorescence. All of the determinate mutant types had shorter plant height and earlier maturity than control indeterminate type but had lower biological yield and seed yield. Among the determinate mutant types, determinate type 1 was only mutant that had a higher harvest index than the control indeterminate type. This promising mutant can be used to further breeding program to increase biological yield and seed yield.Conclusions: This study indicated potential of gamma radiation in inducing novel inflorescence architecture in faba bean. The mutants developed are valuable resources to study genes related to inflorescence architecture through forward genetics approach.


Asunto(s)
Rayos gamma , Inflorescencia/anatomía & histología , Inflorescencia/efectos de la radiación , Mutación , Vicia faba/genética , Vicia faba/efectos de la radiación , Fenotipo , Vicia faba/anatomía & histología
11.
Genes (Basel) ; 10(4)2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999691

RESUMEN

Salt stress has detrimental effects on plant growth and development. MicroRNAs (miRNAs) are a class of noncoding RNAs that are involved in post-transcriptional gene expression regulation. In this study, small RNA sequencing was employed to identify the salt stress-responsive miRNAs of the salt-sensitive Hassawi-3 and the salt-tolerant ILB4347 genotypes of faba bean, growing under salt stress. A total of 527 miRNAs in Hassawi-3 plants, and 693 miRNAs in ILB4347 plants, were found to be differentially expressed. Additionally, 284 upregulated and 243 downregulated miRNAs in Hassawi-3, and 298 upregulated and 395 downregulated miRNAs in ILB4347 plants growing in control and stress conditions were recorded. Target prediction and annotation revealed that these miRNAs regulate specific salt-responsive genes, which primarily included genes encoding transcription factors and laccases, superoxide dismutase, plantacyanin, and F-box proteins. The salt-responsive miRNAs and their targets were functionally enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, which showed that the miRNAs were involved in salt stress-related biological pathways, including the ABC transporter pathway, MAPK signaling pathway, plant hormone signal transduction, and the phosphatidylinositol signaling system, among others, suggesting that the miRNAs play an important role in the salt stress tolerance of the ILB4347 genotype. These results offer a novel understanding of the regulatory role of miRNAs in the salt response of the salt-tolerant ILB4347 and the salt-sensitive Hassawi-3 faba bean genotypes.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , MicroARNs/genética , Tolerancia a la Sal , Vicia faba/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Redes y Vías Metabólicas , ARN de Planta/genética , Análisis de Secuencia de ARN/veterinaria , Vicia faba/genética
12.
Saudi J Biol Sci ; 26(1): 74-82, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30622409

RESUMEN

Seven landraces of cowpea [Vigna unguiculata (L.) Walp.] were assessed for genetic variability in total proteins, protein fractions viz. albumins, globulins, prolamins, and glutelins by SDS-polyacrylamide gel electrophoresis and DNA polymorphism using sequence-related amplified polymorphisms (SRAP) markers. The solubility-based protein fractionation data indicated that the salt soluble fraction (globulin) and water-soluble fraction (albumin) proteins were the predominant fractions in cowpea seeds comprising 45-50.3% and 31.2-35.5% of total soluble proteins, respectively. The electrophoretic pattern revealed the molecular heterogeneity among total proteins as well as different protein fractions. The molecular weights of protein bands obtained by SDS-PAGE varied between 10 to 250, 15 to 110, 15 to 150, and 15 to 130 kDa for total proteins, albumins, globulins, and glutelins, respectively. A large number of bands were found common to the various landraces, indicative of their close relationship with one another. However, a few bands distinctive to some specific landraces were also detected, indicating varietal differences. A 34 SRAP primer pair combination generated a total of 1003 amplicons (loci) showed 100% polymorphism with an average of 0.93 polymorphism information content (PIC) value. Landraces displayed an average 0.50 similarity coefficient which clustered the landraces corresponding to their growth habit in main clusters and to their geographical origin in subcultures. Molecular and biochemical analysis were correlated with a medium level (Mantel test, r = 0.56, P < 0.02). These findings revealed that seed proteins and DNA polymorphism provide valuable information regarding the variability among landraces and this information could be utilized for breeding purposes in the enhancement of protein quality and quantity in grain legumes.

13.
Int J Radiat Biol ; 94(2): 174-185, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29185843

RESUMEN

Purpose: This study was conducted to evaluate and compare the influence of gamma radiations on morphological and chromosomal abnormalities in twenty mutagenized faba bean populations, representing first and second generations (M1 and M2) of five faba bean genotypes.Materials and methods: Five faba bean genotypes were exposed at two doses of gamma radiations (25 and 50 Gy). For determining the types of chromosomal aberrations caused by the gamma radiation, mitotic and meiotic cells were isolated from root tips and pollen mother cells, respectively.Results: The M1 generations of the five genotypes varied for sensitivity to gamma radiations, for seedling emergence. The genotype Skah 2 was more sensitive than other genotypes, the order of sensitivity of other genotypes was Misr 3 > ILB 4347 > Hassawi 2 > Hassawi 3. However, seedling emergence of the M2 generations was not as much reduced as that of the M1 generations. Ten different chlorophyll-deficient mutants were identified among the M2 generations. Gamma radiations also caused the development of abnormal leaflets, flowers and pollen grains. The most common types of chromosome aberrations in the mitotic cells were stickiness, laggard and chromosome breaks, whereas the most common types in the meiotic cells were stickiness and disturbed polarity.Conclusion: The gamma radiation decreased the seedling emergence and induced a wide range of morphological and chromosomal abnormalities in faba bean.

14.
Saudi J Biol Sci ; 25(1): 15-21, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29379350

RESUMEN

This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans (Glycine max (L.) Merr) genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark) genotypes, respectively. Total phenolic content varied from 1.15 to 1.77 mg GAE/g, whereas flavonoids varied from 0.68 to 2.13 mg QE/g. The GC-MS analysis resulted identification of 88 compounds categorized into aldehydes (5), ketones (13), alcohols (5), carboxylic acids (7), esters (13), alkanes (2), heterocyclic compounds (19), phenolic compound (9), sugar moiety (7) ether (4) and amide (3), one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1) had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties.

15.
3 Biotech ; 8(12): 502, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30498675

RESUMEN

Drought and salinity are the major factors that limit the faba bean (Vicia faba L.) production worldwide. The aim of this study is to identify the water stress differentially expressed genes (DEGs) through the root transcriptome analyses of the drought-tolerant Hassawi 2 genotype at vegetative and flowering stages. A total of 624.8 M high-quality Illumina reads were generated and assembled into 198,155 all-unigenes with a mean length of 738 bp and an N50 length of 1347 bp. Among all-unigenes, 78,262 were assigned to non-redundant (Nr), 66,254 to nucleotide (Nt), 54,034 to KEGG, and 43,913 to gene ontology (GO) annotations. A total of 36,834 and 35,510 unigenes were differentially expressed at the vegetative and flowering stages of Hassawi 2 under drought stress, respectively. The majority of unigenes were down-regulated at both developmental stages. However, the number of genes up-regulated (15,366) at the flowering stage exceeded the number of those up-regulated (14,097) at the vegetative stage, and the number of genes down-regulated (20,144) at the flowering stage was smaller than the number of those down-regulated (22,737) at the vegetative stage. The drought stress-responsive differentially expressed unigenes coded for various regulatory proteins, including protein kinases and phosphatases, transcription factors and plant hormones and functional proteins including enzymes for osmoprotectant, detoxification and transporters were differentially expressed, most of which were largely up-regulated. Moreover, a substantial proportion of the DEGs identified in this study were novel, most exhibited a significant change in their expression levels under water stress, making them an unexploited resource that might control specific responses to drought stress in the faba bean. Finally, qRT-PCR results were found almost consistent with the results of next-generation sequencing. Our data will help in understanding the drought tolerance mechanisms in plants and will provide resources for functional genomics.

16.
Saudi J Biol Sci ; 25(1): 123-129, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29379368

RESUMEN

The genetic diversity of 177 accessions of Panicum turgidum Forssk, representing ten populations collected from four geographical regions in Saudi Arabia, was analyzed using amplified fragment length polymorphism (AFLP) markers. A set of four primer-pairs with two/three selective nucleotides scored 836 AFLP amplified fragments (putative loci/genome landmarks), all of which were polymorphic. Populations collected from the southern region of the country showed the highest genetic diversity parameters, whereas those collected from the central regions showed the lowest values. Analysis of molecular variance (AMOVA) revealed that 78% of the genetic variability was attributable to differences within populations. Pairwise values for population differentiation and genetic structure were statistically significant for all variances. The UPGMA dendrogram, validated by principal coordinate analysis-grouped accessions, corresponded to the geographical origin of the accessions. Mantel's test showed that there was a significant correlation between the genetic and geographical distances (r = 0.35, P < 0.04). In summary, the AFLP assay demonstrated the existence of substantial genetic variation in P. turgidum. The relationship between the genetic diversity and geographical source of P. turgidum populations of Saudi Arabia, as revealed through this comprehensive study, will enable effective resource management and restoration of new areas without compromising adaptation and genetic diversity.

17.
Saudi J Biol Sci ; 24(1): 80-89, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28053575

RESUMEN

This study was carried out to identify drought-responsive genes in a drought tolerant faba bean variety (Hassawi 2) using a suppressive subtraction hybridization approach (SSH). A total of 913 differentially expressed clones were sequenced from a differential cDNA library that resulted in a total of 225 differentially expressed ESTs. The genes of mitochondrial and chloroplast origin were removed, and the remaining 137 EST sequences were submitted to the gene bank EST database (LIBEST_028448). A sequence analysis identified 35 potentially drought stress-related ESTs that regulate ion channels, kinases, and energy production and utilization and transcription factors. Quantitative PCR on Hassawi 2 genotype confirmed that more than 65% of selected drought-responsive genes were drought-related. Among these induced genes, the expression levels of eight highly up-regulated unigenes were further analyzed across 38 selected faba bean genotypes that differ in their drought tolerance levels. These unigenes included ribulose 1,5-bisphosphate carboxylase (rbcL) gene, non-LTR retroelement reverse related, probable cyclic nucleotide-gated ion channel, polyubiquitin, potassium channel, calcium-dependent protein kinase and putative respiratory burst oxidase-like protein C and a novel unigene. The expression patterns of these unigenes were variable across 38 genotypes however, it was found to be very high in tolerant genotype. The up-regulation of these unigenes in majority of tolerant genotypes suggests their possible role in drought tolerance. The identification of possible drought responsive candidate genes in Vicia faba reported here is an important step toward the development of drought-tolerant genotypes that can cope with arid environments.

18.
3 Biotech ; 7(5): 289, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28868216

RESUMEN

This study aimed to assess genetic variability at molecular and phytochemical levels among the four most commonly grown olive cultivars and the wild-type olive of Saudi Arabia. Sixty-six and 80 amplicons were generated from 9 random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) primers, each, producing an average of 95.9 and 86.44% polymorphism for the two markers, respectively. The PIC values were 82.2% for the RAPD and 85.4% for the ISSR markers and the discrimination power for both the markers was 11.1%. The UPGMA cluster analysis based on the RAPD and ISSR data resulted in the aggregation of cultivars and wild accession with a good bootstrapping value according to their origin. Furthermore, a total of 199 compounds were identified in the cultivars based on peak area, retention time, and molecular formula using GC-MS analyses of methanolic and ethanolic extracts. These compounds were classified according to their chemical class; most of them were fatty acids, alcoholic compounds, carboxylic acids, aldehydes, heterocyclic compounds, ketones, alkanes, and phenols. Genetic and phytochemical distances were significantly correlated, based on the Mantel test. The Saudi wild accession also had high numbers of fatty acids and their esters, and can be used in breeding programs for generating new genotypes with interesting characters.

19.
Methods Mol Biol ; 1638: 283-313, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755231

RESUMEN

Expressed sequence tags (EST) were generated from a normalized cDNA library of the date palm Sukkari cv. to understand the high-quality and better field performance of this well-known commercial cultivar. A total of 6943 high-quality ESTs were generated, out of them 6671 are submitted to the GenBank dbEST (LIBEST_028537). The generated ESTs were assembled into 6362 unigenes, consisting of 494 (14.4%) contigs and 5868 (84.53%) singletons. The functional annotation shows that the majority of the ESTs are associated with binding (44%), catalytic (40%), transporter (5%), and structural molecular (5%) activities. The blastx results show that 73% of unigenes are significantly similar to known plant genes and 27% are novel. The latter could be of particular interest in date palm genetic studies. Further analysis shows that some ESTs are categorized as stress/defense- and fruit development-related genes. These newly generated ESTs could significantly enhance date palm EST databases in the public domain and are available to scientists and researchers across the globe. This knowledge will facilitate the discovery of candidate genes that govern important developmental and agronomical traits in date palm. It will provide important resources for developing genetic tools, comparative genomics, and genome evolution among date palm cultivars.


Asunto(s)
Etiquetas de Secuencia Expresada/metabolismo , Genes de Plantas/genética , Phoeniceae/genética , Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica de las Plantas/genética , Biblioteca de Genes , Genómica/métodos , Anotación de Secuencia Molecular/métodos , Filogenia , Análisis de Secuencia de ADN/métodos
20.
Methods Mol Biol ; 1638: 315-337, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28755232

RESUMEN

Development of highly informative markers such as simple sequence repeats (SSR) for cultivar identification and germplasm characterization and management is essential for date palms genetic studies. The present study documents the development of SSR markers and assesses genetic relationships of commonly grown date palm (Phoenix dactylifera L.) cultivars in different geographical regions of Saudi Arabia. A total of 93 novel simple sequence repeat (SSR) markers were screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs are dinucleotide, 25% trinucleotide, 3% tetranucleotide, and 1% pentanucleotide motives and show 100% polymorphism. The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis illustrates that cultivars trend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) reveals genetic variation among and within cultivars of 27% and 73%, respectively, according to the geographical distribution of the cultivars. Developed microsatellite markers are of additional value to date palm characterization, tools which can be used by researchers in population genetics, cultivar identification, as well as genetic resource exploration and management. The cultivars tested exhibited a significant amount of genetic diversity and could be suitable for successful breeding programs. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).


Asunto(s)
Genoma de Planta/genética , Repeticiones de Microsatélite/genética , Phoeniceae/genética , Cruzamiento/métodos , Análisis por Conglomerados , ADN de Plantas/genética , Marcadores Genéticos/genética , Genómica/métodos , Polimorfismo Genético/genética , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda