Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Pharmacol ; 100(5): 428-455, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34452975

RESUMEN

Vascular pathology is increased in diabetes because of reactive-oxygen-species (ROS)-induced endothelial cell damage. We found that in vitro and in a streptozotocin diabetes model in vivo, metformin at diabetes-therapeutic concentrations (1-50 µM) protects tissue-intact and cultured vascular endothelial cells from hyperglycemia/ROS-induced dysfunction typified by reduced agonist-stimulated endothelium-dependent, nitric oxide-mediated vasorelaxation in response to muscarinic or proteinase-activated-receptor 2 agonists. Metformin not only attenuated hyperglycemia-induced ROS production in aorta-derived endothelial cell cultures but also prevented hyperglycemia-induced endothelial mitochondrial dysfunction (reduced oxygen consumption rate). These endothelium-protective effects of metformin were absent in orphan-nuclear-receptor Nr4a1-null murine aorta tissues in accord with our observing a direct metformin-Nr4a1 interaction. Using in silico modeling of metformin-NR4A1 interactions, Nr4a1-mutagenesis, and a transfected human embryonic kidney 293T cell functional assay for metformin-activated Nr4a1, we identified two Nr4a1 prolines, P505/P549 (mouse sequences corresponding to human P501/P546), as key residues for enabling metformin to affect mitochondrial function. Our data indicate a critical role for Nr4a1 in metformin's endothelial-protective effects observed at micromolar concentrations, which activate AMPKinase but do not affect mitochondrial complex-I or complex-III oxygen consumption rates, as does 0.5 mM metformin. Thus, therapeutic metformin concentrations requiring the expression of Nr4a1 protect the vasculature from hyperglycemia-induced dysfunction in addition to metformin's action to enhance insulin action in patients with diabetes. SIGNIFICANCE STATEMENT: Metformin improves diabetic vasodilator function, having cardioprotective effects beyond glycemic control, but its mechanism to do so is unknown. We found that metformin at therapeutic concentrations (1-50µM) prevents hyperglycemia-induced endothelial dysfunction by attenuating reactive oxygen species-induced damage, whereas high metformin (>250 µM) impairs vascular function. However, metformin's action requires the expression of the orphan nuclear receptor NR4A1/Nur77. Our data reveal a novel mechanism whereby metformin preserves diabetic vascular endothelial function, with implications for developing new metformin-related therapeutic agents.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Hiperglucemia/prevención & control , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Células HEK293 , Humanos , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Estrés Oxidativo/fisiología , Vasodilatadores/farmacología
2.
Am J Physiol Endocrinol Metab ; 317(2): E350-E361, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31211619

RESUMEN

We proposed that circulating metabolites generated by the intestinal microbiota can affect vascular function. One such metabolite, indole 3-propionic acid (IPA), can activate the pregnane X receptor(PXR), a xenobiotic-activated nuclear receptor present in many tissues, including the vascular endothelium. We hypothesized that IPA could regulate vascular function by modulating PXR activity. To test this, Pxr+/+ mice were administered broad-spectrum antibiotics for 2 wk with IPA supplementation. Vascular function was evaluated by bioassay using aorta and pulmonary artery ring tissue from antibiotic-treated Pxr+/+ and Pxr-/-mice, supplemented with IPA, and using aorta tissue maintained in organ culture for 24 h in the presence of IPA. Endothelium-dependent, nitric oxide(NO)-mediated muscarinic and proteinase-activated receptor 2(PAR2)-stimulated vasodilation was assessed. Endothelial nitric oxide synthase (eNOS) abundance was evaluated in intact tissue or in aorta-derived endothelial cell cultures from Pxr+/+ and Pxr-/- mice, and vascular Pxr levels were assessed in tissues obtained from Pxr+/+ mice treated with antibiotics and supplemented with IPA. Antibiotic-treated Pxr+/+ mice exhibited enhanced agonist-induced endothelium-dependent vasodilation, which was phenocopied by tissues from either Pxr-/- or germ-free mice. IPA exposure reduced the vasodilatory responses in isolated and cultured vessels. No effects of IPA were observed for tissues obtained from Pxr-/- mice. Serum nitrate levels were increased in antibiotic-treated Pxr+/+and Pxr-/- mice. eNOS abundance was increased in aorta tissues and cultured endothelium from Pxr-/- mice. PXR stimulation reduced eNOS expression in cultured endothelial cells from Pxr+/+ but not Pxr-/- mice. The microbial metabolite IPA, via the PXR, plays a key role in regulating endothelial function. Furthermore, antibiotic treatment changes PXR-mediated vascular endothelial responsiveness by upregulating eNOS.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Indoles/farmacología , Receptor X de Pregnano/agonistas , Receptor X de Pregnano/fisiología , Vasodilatación/efectos de los fármacos , Animales , Antibacterianos/farmacología , Células Cultivadas , Células Endoteliales/fisiología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Indoles/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/efectos de los fármacos , Microbiota/fisiología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Receptor X de Pregnano/genética , Vasodilatación/genética
3.
Biol Chem ; 399(9): 1023-1039, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29924723

RESUMEN

We propose that in the microenvironment of inflammatory tissues, including tumours, extracellular proteinases can modulate cell signalling in part by regulating proteinase-activated receptors (PARs). We have been exploring this mechanism in a variety of inflammation and tumour-related settings that include tumour-derived cultured cells from prostate and bladder cancer, as well as immune inflammatory cells that are involved in the pathology of inflammatory diseases including multiple sclerosis. Our work showed that proteinase signalling via the PARs affects prostate and bladder cancer-derived tumour cell behaviour and can regulate calcium signalling in human T-cell and macrophage-related inflammatory cells as well as in murine splenocytes. Further, we found that the tumour-derived prostate cancer cells and immune-related cells (Jurkat, THP1, mouse splenocytes) can produce PAR-regulating proteinases (including kallikreins: kallikrein-related peptidases), that can control tissue function by both a paracrine and autocrine mechanism. We suggest that this PAR-driven signalling process involving secreted microenvironment proteinases can play a key role in cancer and inflammatory diseases including multiple sclerosis.


Asunto(s)
Inflamación/metabolismo , Péptido Hidrolasas/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Proteinasa-Activados/metabolismo , Microambiente Tumoral , Animales , Células Cultivadas , Humanos , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Próstata/patología
4.
Mol Pharmacol ; 91(4): 287-295, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28126849

RESUMEN

Thrombin initiates human platelet aggregation by coordinately activating proteinase-activated receptors (PARs) 1 and 4. However, targeting PAR1 with an orthosteric-tethered ligand binding-site antagonist results in bleeding, possibly owing to the important role of PAR1 activation on cells other than platelets. Because of its more restricted tissue expression profile, we have therefore turned to PAR4 as an antiplatelet target. We have identified an intracellular PAR4 C-terminal motif that regulates calcium signaling and ß-arrestin interactions. By disrupting this PAR4 calcium/ß-arrestin signaling process with a novel cell-penetrating peptide, we were able to inhibit both thrombin-triggered platelet aggregation in vitro and clot consolidation in vivo. We suggest that targeting PAR4 represents an attractive alternative to blocking PAR1 for antiplatelet therapy in humans.


Asunto(s)
Plaquetas/metabolismo , Receptores de Trombina/química , Receptores de Trombina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Plaquetas/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Péptidos de Penetración Celular/farmacología , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Transporte de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Trombosis/patología , beta-Arrestinas/metabolismo
5.
Mol Pharmacol ; 92(5): 519-532, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28842394

RESUMEN

Transforming growth factor-ß (TGF-ß), serine proteinases such as trypsin, and proteinase-activated receptor 2 (PAR2) promote tumor development by stimulating invasion and metastasis. Previously, we found that in cancer cells derived from pancreatic ductal adenocarcinoma (PDAC) PAR2 protein is necessary for TGF-ß1-dependent cell motility. Here, we show in the same cells that, conversely, the type I TGF-ß receptor activin receptor-like kinase 5 is dispensable for trypsin and PAR2 activating peptide (PAR2-AP)-induced migration. To reveal whether Gq-calcium signaling is a prerequisite for PAR2 to enhance TGF-ß signaling, we investigated the effects of PAR2-APs, PAR2 mutation and PAR2 inhibitors on TGF-ß1-induced migration, reporter gene activity, and Smad activation. Stimulation of cells with PAR2-AP alone failed to enhance basal or TGF-ß1-induced C-terminal phosphorylation of Smad3, Smad-dependent activity of a luciferase reporter gene, and cell migration. Consistently, in complementary loss of function studies, abrogation of the PAR2-Gq-calcium signaling arm failed to suppress TGF-ß1-induced cell migration, reporter gene activity, and Smad3 activation. Together, our findings suggest that the calcium-regulating motif is not required for PAR2 to synergize with TGF-ß1 to promote cell motility. Additional experiments in PDAC cells revealed that PAR2 and TGF-ß1 synergy may involve TGF-ß1 induction of enzymes that cause autocrine cleavage/activation of PAR2, possibly through a biased signaling function. Our results suggest that although reducing PAR2 protein expression may potentially block TGF-ß's prooncogenic function, inhibiting PAR2-Gq-calcium signaling alone would not be sufficient to achieve this effect.


Asunto(s)
Señalización del Calcio/fisiología , Movimiento Celular/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células HEK293 , Humanos , Oligopéptidos/farmacología , Receptor PAR-2 , Receptor Tipo I de Factor de Crecimiento Transformador beta
6.
Mol Pharmacol ; 89(5): 606-14, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26957205

RESUMEN

Thrombin is known to signal to cells by cleaving/activating a G-protein-coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggeringß-arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.


Asunto(s)
Señalización del Calcio , Sistema de Señalización de MAP Quinasas , Receptor PAR-2/agonistas , Trombina/metabolismo , Vasodilatación , Sustitución de Aminoácidos , Animales , Aorta , Arrestinas/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Endotelio Vascular/fisiología , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Mutación , Oligopéptidos/farmacología , Fragmentos de Péptidos/agonistas , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteolisis , Conejos , Receptor PAR-2/química , Receptor PAR-2/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Vasodilatación/efectos de los fármacos , beta-Arrestinas
7.
J Biol Chem ; 289(49): 34366-77, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25331954

RESUMEN

Mucosal biopsies from inflamed colon of inflammatory bowel disease patients exhibit elevated epithelial apoptosis compared with those from healthy individuals, disrupting mucosal homeostasis and perpetuating disease. Therapies that decrease intestinal epithelial apoptosis may, therefore, ameliorate inflammatory bowel disease, but treatments that specifically target apoptotic pathways are lacking. Proteinase-activated receptor-2 (PAR2), a G protein-coupled receptor activated by trypsin-like serine proteinases, is expressed on intestinal epithelial cells and stimulates mitogenic pathways upon activation. We sought to determine whether PAR2 activation and signaling could rescue colonic epithelial (HT-29) cells from apoptosis induced by proapoptotic cytokines that are increased during inflammatory bowel disease. The PAR2 agonists 2-furoyl-LIGRLO (2f-LI), SLIGKV and trypsin all significantly reduced cleavage of caspase-3, -8, and -9, poly(ADP-ribose) polymerase, and the externalization of phosphatidylserine after treatment of cells with IFN-γ and TNF-α. Knockdown of PAR2 with siRNA eliminated the anti-apoptotic effect of 2f-LI and increased the sensitivity of HT-29 cells to cytokine-induced apoptosis. Concurrent inhibition of both MEK1/2 and PI3K was necessary to inhibit PAR2-induced survival. 2f-LI was found to increase phosphorylation and inactivation of pro-apoptotic BAD at Ser(112) and Ser(136) by MEK1/2 and PI3K-dependent signaling, respectively. PAR2 activation also increased the expression of anti-apoptotic MCL-1. Simultaneous knockdown of both BAD and MCL-1 had minimal effects on PAR2-induced survival, whereas single knockdown had no effect. We conclude that PAR2 activation reduces cytokine-induced epithelial apoptosis via concurrent stimulation of MEK1/2 and PI3K but little involvement of MCL-1 and BAD. Our findings represent a novel mechanism whereby serine proteinases facilitate epithelial cell survival and may be important in the context of colonic healing.


Asunto(s)
Apoptosis/genética , Colon/metabolismo , Células Epiteliales/metabolismo , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Receptor PAR-2/metabolismo , Apoptosis/efectos de los fármacos , Señalización del Calcio , Caspasas/genética , Caspasas/metabolismo , Línea Celular Tumoral , Colon/citología , Colon/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica , Homeostasis/efectos de los fármacos , Humanos , Interferón gamma/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/genética , Oligopéptidos/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilserinas , Inhibidores de las Quinasa Fosfoinosítidos-3 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor PAR-2/antagonistas & inhibidores , Receptor PAR-2/genética , Tripsina/farmacología , Factor de Necrosis Tumoral alfa/farmacología
8.
J Biol Chem ; 288(46): 32979-90, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24052258

RESUMEN

Neutrophil proteinases released at sites of inflammation can affect tissue function by either activating or disarming signal transduction mediated by proteinase-activated receptors (PARs). Because PAR1 is expressed at sites where abundant neutrophil infiltration occurs, we hypothesized that neutrophil-derived enzymes might also regulate PAR1 signaling. We report here that both neutrophil elastase and proteinase-3 cleave the human PAR1 N terminus at sites distinct from the thrombin cleavage site. This cleavage results in a disarming of thrombin-activated calcium signaling through PAR1. However, the distinct non-canonical tethered ligands unmasked by neutrophil elastase and proteinase-3, as well as synthetic peptides with sequences derived from these novel exposed tethered ligands, selectively stimulated PAR1-mediated mitogen-activated protein kinase activation. This signaling was blocked by pertussis toxin, implicating a Gαi-triggered signal pathway. We conclude that neutrophil proteinases trigger biased PAR1 signaling and we describe a novel set of tethered ligands that are distinct from the classical tethered ligand revealed by thrombin. We further demonstrate the function of this biased signaling in regulating endothelial cell barrier integrity.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Elastasa de Leucocito/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mieloblastina/metabolismo , Receptor PAR-1/metabolismo , Línea Celular Tumoral , Activación Enzimática/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/genética , Células HEK293 , Humanos , Elastasa de Leucocito/genética , Mieloblastina/genética , Receptor PAR-1/genética , Trombina/genética , Trombina/metabolismo
9.
Br J Pharmacol ; 181(16): 2725-2749, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637276

RESUMEN

BACKGROUND AND PURPOSE: Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. EXPERIMENTAL APPROACH: The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. KEY RESULTS: We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. CONCLUSION AND IMPLICATIONS: Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.


Asunto(s)
Quimotripsina , Mucosa Intestinal , Receptor PAR-1 , Receptor PAR-2 , Animales , Humanos , Ratones , Quimotripsina/metabolismo , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Transducción de Señal
10.
Biochem Cell Biol ; 91(6): 487-97, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24219291

RESUMEN

Implantation serine proteinase 2 (ISP2), a S1 family serine proteinase, is known for its role in the critical processes of embryo hatching and implantation in the mouse uterus. Native implantation serine proteinases (ISPs) are co-expressed and co-exist as heterodimers in uterine and blastocyst tissues. The ISP1-ISP2 enzyme complex shows trypsin-like substrate specificity. In contrast, we found that ISP2, isolated as a 34 kDa monomer from a Pichia pastoris expression system, exhibited a mixed serine proteolytic substrate specificity, as determined by a phage display peptide cleavage approach and verified by the in vitro cleavage of synthetic peptides. Based upon the peptide sequence substrate selectivity, a database search identified many potential ISP2 targets of physiological relevance, including the proteinase activated receptor 2 (PAR2). The in vitro cleavage studies with PAR2-derived peptides confirmed the mixed substrate specificity of ISP2. Treatment of cell lines expressing proteinase-activated receptors (PARs) 1, 2, and 4 with ISP2 prevented receptor activation by either thrombin (PARs 1 and 4) or trypsin (PAR2). The disarming and silencing of PARs by ISP2 may play a role in successful embryo implantation.


Asunto(s)
Péptidos/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal/genética , Secuencia de Aminoácidos , Animales , Implantación del Embrión , Femenino , Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/química , Pichia/genética , Pichia/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteolisis , Ratas , Receptor PAR-1/genética , Receptor PAR-2/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/genética , Trombina/metabolismo , Tripsina/metabolismo
11.
J Immunol ; 186(5): 3164-72, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21270400

RESUMEN

We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization.


Asunto(s)
Alérgenos/inmunología , Blattellidae/inmunología , Receptor PAR-2/metabolismo , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/fisiología , Administración Intranasal , Alérgenos/administración & dosificación , Animales , Blattellidae/enzimología , Hiperreactividad Bronquial/enzimología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/metabolismo , Línea Celular Transformada , Modelos Animales de Enfermedad , Activación Enzimática/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Nasal/enzimología , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Ratas , Receptor PAR-2/deficiencia , Receptor PAR-2/inmunología , Hipersensibilidad Respiratoria/enzimología
12.
J Biol Chem ; 286(28): 24638-48, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21576245

RESUMEN

Human neutrophil proteinases (elastase, proteinase-3, and cathepsin-G) are released at sites of acute inflammation. We hypothesized that these inflammation-associated proteinases can affect cell signaling by targeting proteinase-activated receptor-2 (PAR(2)). The PAR family of G protein-coupled receptors is triggered by a unique mechanism involving the proteolytic unmasking of an N-terminal self-activating tethered ligand (TL). Proteinases can either activate PAR signaling by unmasking the TL sequence or disarm the receptor for subsequent enzyme activation by cleaving downstream from the TL sequence. We found that none of neutrophil elastase, cathepsin-G, and proteinase-3 can activate G(q)-coupled PAR(2) calcium signaling; but all of these proteinases can disarm PAR(2), releasing the N-terminal TL sequence, thereby preventing G(q)-coupled PAR(2) signaling by trypsin. Interestingly, elastase (but neither cathepsin-G nor proteinase-3) causes a TL-independent PAR(2)-mediated activation of MAPK that, unlike the canonical trypsin activation, does not involve either receptor internalization or recruitment of ß-arrestin. Cleavage of synthetic peptides derived from the extracellular N terminus of PAR(2), downstream of the TL sequence, demonstrated distinct proteolytic sites for all three neutrophil-derived enzymes. We conclude that in inflammation, neutrophil proteinases can modulate PAR(2) signaling by preventing/disarming the G(q)/calcium signal pathway and, via elastase, can selectively activate the p44/42 MAPK pathway. Our data illustrate a new mode of PAR regulation that involves biased PAR(2) signaling by neutrophil elastase and a disarming/silencing effect of cathepsin-G and proteinase-3.


Asunto(s)
Señalización del Calcio/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Receptor PAR-2/agonistas , Receptor PAR-2/metabolismo , Animales , Arrestinas/genética , Arrestinas/metabolismo , Señalización del Calcio/efectos de los fármacos , Catepsina G/genética , Catepsina G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Inflamación/genética , Inflamación/metabolismo , Elastasa de Leucocito , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mieloblastina/genética , Mieloblastina/metabolismo , Péptidos/farmacología , Estructura Terciaria de Proteína , Ratas , Receptor PAR-2/genética , beta-Arrestinas
13.
Biol Chem ; 393(5): 421-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22505524

RESUMEN

We compared signalling pathways such as calcium transients, MAPK activation, ß-arrestin interactions and receptor internalization triggered by kallikrein-related peptidases (KLKs) 8 and 14 in human and rat proteinase-activated receptor (PAR)2-expressing human embryonic kidney (HEK) and Kirsten transformed rat kidney (KNRK) cells. Further, we analysed processing by KLK8 vs. KLK14 of synthetic human and rat PAR2-derived sequences representing the cleavage-activation domain of PAR2. Our data show that like KLK14, KLK8 can unmask a PAR2 receptor-activating sequence from a peptide precursor. However, whilst KLK8, like KLK14, can signal in rat-PAR2-expressing KNRK cells, this enzyme cannot signal via human PAR2 in HEK or KNRK cells, but rather, disarms HEK PAR1. Thus, KLK8 and KLK14 can signal differentially via the PARs to affect tissue function.


Asunto(s)
Calicreínas/metabolismo , Receptor PAR-2/metabolismo , Transducción de Señal , Animales , Células HEK293 , Humanos , Transporte de Proteínas , Ratas
14.
Int J Parasitol ; 52(5): 285-292, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35077730

RESUMEN

Giardia duodenalis cysteine proteases have been identified as key virulence factors and have been implicated in alterations to intestinal goblet cell activity and mucus production during Giardia infection. The present findings demonstrate a novel mechanism by which Giardia cysteine proteases modulate goblet cell activity via cleavage and activation of protease-activated receptor 2. Giardia duodenalis (assemblage A) increased MUC2 mucin gene expression in human colonic epithelial cells in a manner dependent upon both protease-activated receptor 2 activation and Giardia cysteine protease activity. Protease-activated receptor 2 cleavage within the N-terminal activation domain by Giardia proteases was confirmed using a nano-luciferase tagged recombinant protease-activated receptor 2. In keeping with these observations, the synthetic protease-activated receptor 2-activating peptide 2fLIGRLO-amide increased Muc2 gene expression in a time-dependent manner. Calcium chelation and inhibition of the ERK1/2 mitogen activated protein kinase pathway inhibited Muc2 upregulation during Giardia infection, consistent with canonical protease-activated receptor 2 signaling pathways. Giardia cysteine proteases cleaved both recombinant protease-activated receptor 1 and protease-activated receptor 2 within their extracellular activation domains with isolate-dependent efficiency that correlated with the production of cysteine protease activity. Protease-activated receptors represent a novel target for Giardia cysteine proteases, and these findings demonstrate that protease-activated receptor 2 can regulate mucin gene expression in intestinal goblet cells.


Asunto(s)
Proteasas de Cisteína , Giardia lamblia , Mucinas , Receptor PAR-2 , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Expresión Génica , Giardia lamblia/enzimología , Giardia lamblia/genética , Células Caliciformes/metabolismo , Humanos , Mucinas/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo
15.
RSC Med Chem ; 13(6): 726-730, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35814928

RESUMEN

To develop new degrader molecules from an existing protein ligand a linkage vector must be identified and then joined with a suitable E3 ligase without disrupting binding to the respective targets. This is typically achieved through empirically evaluating the degradation efficacy of a series of synthetic degraders. Our strategy for determining optimal linkage sites utilises biotinylated protein ligands, linked via potential conjugation sites of an inhibitor to confirm whether target protein is maintained after forming a conjugate. This method provides low-cost, qualitative evidence that the addition of a linker moiety at a specific position can be tolerated, guiding further optimisation. We demonstrate the application of this method through the exploration of linkage vectors on A-485, a known ligand of p300/CBP, and found a conjugation site through a urea moiety. Pomalidomide was then conjugated through this site with several different linkers and cell viability and degradation were assessed for this library using a myeloma cell line, MM1.S. Compound 18i, with a PEG4 linker, was found to be the most effective p300 degrader and linker length greater than 10 atoms afforded enhanced degradation.

16.
Elife ; 112022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35014606

RESUMEN

Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), while regions exposed to stable flow (s-flow) are protected. The proatherogenic and atheroprotective effects of d-flow and s-flow are mediated in part by the global changes in endothelial cell (EC) gene expression, which regulates endothelial dysfunction, inflammation, and atherosclerosis. Previously, we identified kallikrein-related peptidase 10 (Klk10, a secreted serine protease) as a flow-sensitive gene in mouse arterial ECs, but its role in endothelial biology and atherosclerosis was unknown. Here, we show that KLK10 is upregulated under s-flow conditions and downregulated under d-flow conditions using in vivo mouse models and in vitro studies with cultured ECs. Single-cell RNA sequencing (scRNAseq) and scATAC sequencing (scATACseq) study using the partial carotid ligation mouse model showed flow-regulated Klk10 expression at the epigenomic and transcription levels. Functionally, KLK10 protected against d-flow-induced permeability dysfunction and inflammation in human artery ECs, as determined by NFκB activation, expression of vascular cell adhesion molecule 1 and intracellular adhesion molecule 1, and monocyte adhesion. Furthermore, treatment of mice in vivo with rKLK10 decreased arterial endothelial inflammation in d-flow regions. Additionally, rKLK10 injection or ultrasound-mediated transfection of Klk10-expressing plasmids inhibited atherosclerosis in Apoe-/- mice. Moreover, KLK10 expression was significantly reduced in human coronary arteries with advanced atherosclerotic plaques compared to those with less severe plaques. KLK10 is a flow-sensitive endothelial protein that serves as an anti-inflammatory, barrier-protective, and anti-atherogenic factor.


Asunto(s)
Aterosclerosis/genética , Células Endoteliales/fisiología , Regulación de la Expresión Génica , Inflamación/genética , Calicreínas/genética , Animales , Aterosclerosis/fisiopatología , Inflamación/fisiopatología , Calicreínas/metabolismo , Masculino , Ratones Endogámicos C57BL
18.
Front Immunol ; 11: 629726, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33763056

RESUMEN

Objective: Multiple proteinases are present in the synovial fluid (SF) of an arthritic joint. We aimed to identify inflammatory cell populations present in psoriatic arthritis (PsA) SF compared to osteoarthritis (OA) and rheumatoid arthritis (RA), identify their proteinase-activated receptor 2 (PAR2) signaling function and characterize potentially active SF serine proteinases that may be PAR2 activators. Methods: Flow cytometry was used to characterize SF cells from PsA, RA, OA patients; PsA SF cells were further characterized by single cell 3'-RNA-sequencing. Active serine proteinases were identified through cleavage of fluorogenic trypsin- and chymotrypsin-like substrates, activity-based probe analysis and proteomics. Fluo-4 AM was used to monitor intracellular calcium cell signaling. Cytokine expression was evaluated using a multiplex Luminex panel. Results: PsA SF cells were dominated by monocytes/macrophages, which consisted of three populations representing classical, non-classical and intermediate cells. The classical monocytes/macrophages were reduced in PsA compared to OA/RA, whilst the intermediate population was increased. PAR2 was elevated in OA vs. PsA/RA SF monocytes/macrophages, particularly in the intermediate population. PAR2 expression and signaling in primary PsA monocytes/macrophages significantly impacted the production of monocyte chemoattractant protein-1 (MCP-1). Trypsin-like serine proteinase activity was elevated in PsA and RA SF compared to OA, while chymotrypsin-like activity was elevated in RA compared to PsA. Tryptase-6 was identified as an active serine proteinase in SF that could trigger calcium signaling partially via PAR2. Conclusion: PAR2 and its activating proteinases, including tryptase-6, can be important mediators of inflammation in PsA. Components within this proteinase-receptor axis may represent novel therapeutic targets.


Asunto(s)
Artritis Psoriásica/inmunología , Señalización del Calcio/inmunología , Macrófagos/inmunología , Receptor PAR-2/inmunología , Triptasas/inmunología , Artritis Psoriásica/patología , Femenino , Humanos , Macrófagos/patología , Masculino
19.
Mol Pharmacol ; 76(4): 791-801, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19605524

RESUMEN

We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR(2)) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR(2) and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR(2)-Leu(37)Ser(38), rPAR(2)-Ala(37-38), and rPAR(2)-Ala(39-42) were compared with the trypsin-revealed wild-type rPAR(2) TL sequence, S(37)LIGRL(42)-. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR(2) and rPAR(2)-Ala(39-42) triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR(2)-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR(2)-Ala(37-38) nor rPAR(2)-Leu(37)Ser(38) constructs recruited beta-arrestins-1 or -2 in response to trypsin stimulation, whereas both beta-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered beta-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Galpha(i) (pertussis toxin), Galpha(q) [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the proteolytically revealed TL sequence(s) and the mode of its presentation to the receptor (tethered versus soluble) can confer biased signaling by PAR(2), its arrestin recruitment, and its internalization. Thus, PAR(2) can signal to multiple pathways that are differentially triggered by distinct proteinase-revealed TLs or by synthetic signal-selective activating peptides.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Receptor PAR-2/agonistas , Western Blotting , Línea Celular , Inhibidores Enzimáticos/farmacología , Humanos , Ligandos , Activación Transcripcional , Tripsina/metabolismo
20.
Cancers (Basel) ; 11(8)2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31434318

RESUMEN

The small GTPase RAC1B functions as a powerful inhibitor of transforming growth factor (TGF)-ß1-induced epithelial-mesenchymal transition, cell motility, and growth arrest in pancreatic epithelial cells. Previous work has shown that RAC1B downregulates the TGF-ß type I receptor ALK5, but the molecular details of this process have remained unclear. Here, we hypothesized that RAC1B-mediated suppression of activin receptor-like kinase 5 (ALK5) involves proteinase-activated receptor 2 (PAR2), a G protein-coupled receptor encoded by F2RL1 that is crucial for sustaining ALK5 expression. We found in pancreatic carcinoma Panc1 cells that PAR2 is upregulated by TGF-ß1 in an ALK5-dependent manner and that siRNA-mediated knockdown of RAC1B increased both basal and TGF-ß1-induced expression of PAR2. Further, the simultaneous knockdown of PAR2 and RAC1B rescued Panc1 cells from a RAC1B knockdown-induced increase in ALK5 abundance and the ALK5-mediated increase in TGF-ß1-induced migratory activity. Conversely, Panc1 cells with stable ectopic expression of RAC1B displayed reduced ALK5 expression, an impaired upregulation of PAR2, and a reduced migratory responsiveness to TGF-ß1 stimulation. However, these effects could be reversed by ectopic overexpression of PAR2. Moreover, the knockdown of PAR2 alone in Panc1 cells and HaCaT keratinocytes phenocopied RAC1B's ability to suppress ALK5 abundance and TGF-ß1-induced chemokinesis and growth inhibition. Lastly, we found that the RAC1B knockdown-induced increase in TGF-ß1-induced PAR2 mRNA expression was sensitive to pharmacological inhibition of MEK-ERK signaling. Our data show that in pancreatic and skin epithelial cells, downregulation of ALK5 activity by RAC1B is secondary to suppression of F2RL1/PAR2 expression. Since F2RL1 itself is a TGF-ß target gene and its upregulation by TGF-ß1 is mediated by ALK5 and MEK-ERK signaling, we suggest the existence of a feed-forward signaling loop involving ALK5 and PAR2 that is efficiently suppressed by RAC1B to restrict TGF-ß-driven cell motility and growth inhibition.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda