RESUMEN
Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies.
Asunto(s)
Especies Introducidas , Invertebrados , Dinámica Poblacional , Animales , Invertebrados/fisiología , Europa (Continente) , Ecosistema , Agua DulceRESUMEN
Inland recreational fishing is primarily considered a leisure-driven activity in freshwaters, yet its harvest can contribute to food systems. Here we estimate that the harvest from inland recreational fishing equates to just over one-tenth of all reported inland fisheries catch globally. The estimated total consumptive use value of inland recreational fish destined for human consumption may reach US$9.95 billion annually. We identify Austria, Canada, Germany and Slovakia as countries above the third quantile for nutrition, economic value and climate vulnerability. These results have important implications for populations dependent on inland recreational fishing for food. Our findings can inform climate adaptation planning for inland recreational fisheries, particularly those not currently managed as food fisheries.
Asunto(s)
Cambio Climático , Explotaciones Pesqueras , Valor Nutritivo , Recreación , Cambio Climático/economía , Explotaciones Pesqueras/economía , Humanos , Animales , Peces , Canadá , Alemania , Austria , Eslovaquia , Conservación de los Recursos Naturales/economía , Agua DulceRESUMEN
Freshwater ecosystems appear more vulnerable to biodiversity loss due to several anthropogenic disturbances and freshwater fish are particularly vulnerable to these impacts. We aimed to (1) identify the contribution of land use, spatial variables, and invasion degree in determining freshwater fish alpha (i.e., species richness) and beta (i.e., local contributions to beta diversity, LCBD) diversity, evaluating also the relationship between invasion degree and nestedness ( ß nes) and turnover ( ß sim) components of beta diversity. (2) Investigate the relationship between alpha diversity and LCBD, under the hypothesis that alpha diversity and LCBD correlate negatively and (3) investigate the relationship between species contributions to beta diversity (SCBD) and species occurrence, hypothesizing that non-native species show a lower contribution to beta diversity. The linear mixed models and the partition of R 2 retained the invasion degree as the most important variables explaining alpha and beta diversity, having a positive relationship with both diversity components. Furthermore, land use related to human impacts had a positive influence on alpha diversity, whereas it showed a negative effect on LCBD. Regression model further showed that invasion degree related positively with ß sim, but negatively with ß nes, suggesting that non-native species were involved in the replacement of native species in the fish community. Alpha diversity and LCBD showed a weak positive correlation, meaning that sites with low species richness have higher LCBD. SCBD scaled positively with species occurrence highlighting that rarer species contribute less to SCBD. Finally, native and exotic species contributed similarly to beta diversity. These results suggest that invasion degree plays a central role in shaping alpha and beta diversity in stream fish, more than land use features reflecting habitat alteration or other geospatial variables. Furthermore, it is important to evaluate separately the native and the non-native components of biotic communities to identify linkages between invasion dynamics and biodiversity loss.
RESUMEN
We analyzed the large-scale drivers of biological invasions using freshwater fish in a Mediterranean country as a test case, and considering the contribution of single species to the overall invasion pattern. Using Boosted Regression Tree (BRT) models, variation partitioning and Redundancy Analysis (RDA), we found that human factors (especially eutrophication) and climate (especially temperature) were significant drivers of overall invasion. Geography was also relevant in BRT and RDA analysis, both at the overall invasion and the single species level. Only variation partitioning suggested that land use was the second most significant driver group, with considerable overlap between different invasion drivers and only land use and human factors standing out for single effects. There was general accordance both between different analyses, and between invasion outcomes at the overall and the species level, as most invasive species share similar ecological traits and prefer lowland river stretches. Human-mediated eutrophication was the most relevant invasion driver, but the role of geography and climate was at least equally important in explaining freshwater fish invasions. Overall, human factors were less prominent than natural factors in driving the spread and prevalence of invasion, and the species spearheading it.
Asunto(s)
Efectos Antropogénicos , Ecosistema , Animales , Peces , Agua Dulce , Especies IntroducidasRESUMEN
Inland recreational fisheries, found in lakes, rivers, and other landlocked waters, are important to livelihoods, nutrition, leisure, and other societal ecosystem services worldwide. Although recreationally-caught fish are frequently harvested and consumed by fishers, their contribution to food and nutrition has not been adequately quantified due to lack of data, poor monitoring, and under-reporting, especially in developing countries. Beyond limited global harvest estimates, few have explored species-specific harvest patterns, although this variability has implications for fisheries management and food security. Given the continued growth of the recreational fishery sector, understanding inland recreational fish harvest and consumption rates represents a critical knowledge gap. Based on a comprehensive literature search and expert knowledge review, we quantified multiple aspects of global inland recreational fisheries for 81 countries spanning ~192 species. For each country, we assembled recreational fishing participation rate and estimated species-specific harvest and consumption rate. This dataset provides a foundation for future assessments, including understanding nutritional and economic contributions of inland recreational fisheries.
Asunto(s)
Explotaciones Pesqueras , Animales , Conservación de los Recursos Naturales , Ecosistema , Peces , Especificidad de la EspecieRESUMEN
Eutrophication has a profound impact on ecosystems worldwide. Grass carp Ctenopharyngodon idella, an herbivorous fish, has been introduced to control aquatic plant overgrowth caused by eutrophication, but could have other, potentially detrimental, effects. We used the Po di Volano basin (south of the Po River delta, northern Italy) as a test case to explore whether grass carp effects on canal aquatic vegetation could be at the root of historical changes in N loads exported from the basin to the Goro Lagoon. We modeled the aquatic vegetation production and standing crop, its denitrification potential, and its consumption by introduced grass carp. We then examined whether changes in historical nitrogen loads matched the modeled losses of the drainage network denitrification function or other changes in agricultural practices. Our results indicate that introduced grass carp could completely remove submerged vegetation in the Po di Volano canal network, which could - in turn - lead to substantial loss of the denitrification function of the system, causing in an increase in downstream nitrogen loads. A corresponding increase, matching both timing and magnitude, was detected in historical nitrogen loads to the Goro Lagoon, which were significantly different before and after the time of modeled collapse of the denitrification function. This increase was not clearly linked to watershed use or agricultural practices, which implies that the loss of the denitrification function through grass carp overgrazing could be a likely explanation of the increase in downstream nitrogen loads. Perhaps for the first time, we provide evidence that a freshwater fish introduction could have caused long-lasting changes in nutrient dynamics that are exported downstream to areas where the fish is not present.
Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Ecosistema , Eutrofización , Agua Dulce , ItaliaRESUMEN
Although one of the most evident effects of biological invasions is the loss of native taxonomic diversity, contrasting views exist on the consequences of biological invasions on native functional diversity. We investigated this topic using Mediterranean stream, river and canal fish communities as a test case, at 3734 sites in Italy, and distinguishing between exotic and translocated species invasion in three different faunal districts. Our results clearly confirmed that introduced species were widespread and in many cases the invasion was severe (130 communities were completely composed by introduced species). Exotic and translocated fish species had substantially different geographical distribution patterns, perhaps arising from their differences in introduction timing, spread and invasion mechanisms. We also found a clear decreasing trend of functional dispersion along an invasion gradient, confirming our hypothesis that the invasion process can diminish the relative diversity of ecofunctional traits of host fish communities. Furthermore, our results suggested that exotic species might have a greater negative effect than translocated species on the relative diversity of ecofunctional traits of fish communities. This could also be linked to the fact that translocated species are more ecofunctionally similar to native ones, compared to the exotics. Our multivariate analysis of site-specific combinations of ecofunctional traits highlighted some traits characteristic of all invaded communities, while our discriminant analysis underlined how there was a substantial ecofunctional overlap between native, exotic and translocated species groups in most areas.
Asunto(s)
Biodiversidad , Ecosistema , Animales , Peces , Especies Introducidas , ItaliaRESUMEN
Exotic species invasions often result in native biodiversity loss, i.e. a lower taxonomic diversity, but current knowledge on invasions effects underlined a potential increase of functional diversity. We thus explored the connections between functional diversity and exotic species invasions, while accounting for their environmental drivers, using a fine-resolution large dataset of Mediterranean stream fish communities. While functional diversity of native and exotic species responded similarly to most environmental constraints, we found significant differences in the effects of altitude and in the different ranking of constraints. These differences suggest that invasion dynamics could play a role in overriding some major environmental drivers. Our results also showed that a lower diversity of ecological traits in communities (about half of less disturbed communities) corresponded to a high invasion degree, and that the exotic component of communities had typically less diverse ecological traits than the native one, even when accounting for stream order and species richness. Overall, our results suggest that possible outcomes of severe exotic species invasions could include a reduced functional diversity of invaded communities, but analyzing data with finer ecological, temporal and spatial resolutions would be needed to pinpoint the causal relationship between invasions and functional diversity.
Asunto(s)
Peces/fisiología , Especies Introducidas , Animales , Agua Dulce , Modelos EstadísticosRESUMEN
Although ubiquitous elements of agricultural landscapes, the interest on ditches and canals as effective filters to buffer nitrate pollution has been raised only recently. The aim of the present study was to investigate the importance of in-ditch denitrification supported by emergent aquatic vegetation in the context of N budget in agricultural lands of a worldwide hotspot of nitrate contamination and eutrophication, i.e. the lowlands of the Po River basin (Northern Italy). The effectiveness of N abatement in the ditch network (>18,500â¯km) was evaluated by extrapolating up to the watershed reach-scale denitrification rates measured in a wide range of environmental conditions. Scenarios of variable extents of vegetation maintenance were simulated (25%, 50% and 90%), and compared to the current situation when the natural development occurs in only 5% of the ditch network length, subjected to mechanical mowing in summer. Along the typical range of nitrate availability in the Po River lowlands waterways (0.5-8â¯mgâ¯Nâ¯L-1), the current N removal performed by the ditch network was estimated in 3300-4900â¯tâ¯Nâ¯yr-1, accounting for at most 11% of the N excess from agriculture. The predicted nitrate mitigation potential would increase up to 4000-33,600â¯tâ¯Nâ¯yr-1 in case of vegetation maintenance in 90% of the total ditch length. Moreover, a further significant enhancement (57% on average) of this key ecosystem function would be achieved by postponing the mowing of vegetation at the end of the growing season. The simulated outcomes suggest that vegetated ditches may offer new agricultural landscape management opportunities for effectively decreasing nitrate loads in surface waters, with potential improved water quality at the watershed level and in the coastal zones. In conclusion, ditches and canals may act as metabolic regulators and providers of ecosystem services if conservative management practices of in-stream vegetation are properly implemented and coupled to hydraulic needs.
RESUMEN
While the significance of anthropogenic pressures in shaping species distributions and abundances is undeniable, some ambiguity still remains on their relative magnitude and interplay with natural environmental factors. In our study, we examined 91 late-invasion-stage river locations in Northern Italy using ordination methods and variance partitioning (partial-CCA), as well as an assessment of environmental thresholds (TITAN), to attempt to disentangle the effects of eutrophication and exotic species on native species. We found that exotic species, jointly with water quality (primarily eutrophication) and geomorphology, are the main drivers of the distribution of native species and that native species suffer more joint effects than exotic species. We also found that water temperature clearly separates species distributions and that some native species, like Italian bleak (Alburnus alborella) and Italian rudd (Scardinius hesperidicus), seem to be the most resilient to exotic fish species. We also analyzed the dataset for nestedness (BINMATNEST) to identify priority targets of conservation. As a result, we confirmed that altitude correlated negatively with eutrophication and nestedness of exotic species and positively with native species. Overall, our analysis was able to detect the effects of species invasions even at a late invasion stage, although reciprocal effects seemed comparable at this stage. Exotic species have pushed most native species on the edge of local extinction in several sites and displaced most of them on the rim of their natural distribution. Any potential site- and species-specific conservation action aimed at improving this situation could benefit from a carefully considered prioritization to yield the highest results-per-effort and success rate. However, we encourage future research to update the information available before singling out specific sites for conservation or outlining conservation actions.
Asunto(s)
Conservación de los Recursos Naturales , Cyprinidae/fisiología , Ecosistema , Monitoreo del Ambiente , Especies Introducidas , Altitud , Animales , Biodiversidad , Italia , Calidad del AguaRESUMEN
Bighead carp (Hypophthalmichthys nobilis) have been introduced throughout Europe, mostly unintentionally, and little attention has been given to their potential for natural reproduction. We investigated the presence of young-of-the-year bighead carp in an irrigation canal network of Northern Italy and the environmental conditions associated with spawning in 2011-2015. The adult bighead carp population of the canal network was composed by large, likely mature, individuals with an average density of 45.2 kg/ha (over 10 fold more than in the main river). The 29 juvenile bighead carp found were 7.4-13.1 cm long (TL) and weighed 9.5-12.7 g. Using otolith-derived spawning dates we estimated that these juveniles were 94-100 days old, placing their fertilization and hatch dates in mid-to-end-June. Using this information in combination with thermal and hydraulic data, we examined the validity of existing models predicting the onset of spawning conditions and the viability of egg pathways to elucidate spawning location of the species. While evidence of reproduction was not found every year, we determined that potentially viable spawning conditions (annual degree-days and temperature thresholds) and pathways of egg drift suitable for hatching are present in short, slow-flowing canals.