Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Annu Rev Neurosci ; 45: 515-531, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35440142

RESUMEN

Developmental abnormalities of the cerebellum are among the most recognized structural brain malformations in human prenatal imaging. Yet reliable information regarding their cause in humans is sparse, and few outcome studies are available to inform prognosis. We know very little about human cerebellar development, in stark contrast to the wealth of knowledge from decades of research on cerebellar developmental biology of model organisms, especially mice. Recent studies show that multiple aspects of human cerebellar development significantly differ from mice and even rhesus macaques, a nonhuman primate. These discoveries challenge many current mouse-centric models of normal human cerebellar development and models regarding the pathogenesis of several neurodevelopmental phenotypes affecting the cerebellum, including Dandy-Walker malformation and medulloblastoma. Since we cannot model what we do not know, additional normative and pathological human developmental data are essential, and new models are needed.


Asunto(s)
Neoplasias Cerebelosas , Trastornos del Neurodesarrollo , Animales , Cerebelo , Femenino , Humanos , Macaca mulatta , Ratones , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Embarazo , Transcriptoma
2.
Nature ; 609(7929): 1012-1020, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36131015

RESUMEN

Medulloblastoma, a malignant childhood cerebellar tumour, segregates molecularly into biologically distinct subgroups, suggesting that a personalized approach to therapy would be beneficial1. Mouse modelling and cross-species genomics have provided increasing evidence of discrete, subgroup-specific developmental origins2. However, the anatomical and cellular complexity of developing human tissues3-particularly within the rhombic lip germinal zone, which produces all glutamatergic neuronal lineages before internalization into the cerebellar nodulus-makes it difficult to validate previous inferences that were derived from studies in mice. Here we use multi-omics to resolve the origins of medulloblastoma subgroups in the developing human cerebellum. Molecular signatures encoded within a human rhombic-lip-derived lineage trajectory aligned with photoreceptor and unipolar brush cell expression profiles that are maintained in group 3 and group 4 medulloblastoma, suggesting a convergent basis. A systematic diagnostic-imaging review of a prospective institutional cohort localized the putative anatomical origins of group 3 and group 4 tumours to the nodulus. Our results connect the molecular and phenotypic features of clinically challenging medulloblastoma subgroups to their unified beginnings in the rhombic lip in the early stages of human development.


Asunto(s)
Linaje de la Célula , Neoplasias Cerebelosas , Meduloblastoma , Metencéfalo , Animales , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/embriología , Neoplasias Cerebelosas/patología , Cerebelo/embriología , Humanos , Meduloblastoma/clasificación , Meduloblastoma/embriología , Meduloblastoma/patología , Metencéfalo/embriología , Ratones , Neuronas/patología , Estudios Prospectivos
3.
J Neurophysiol ; 128(1): 40-61, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583973

RESUMEN

We identified six novel de novo human KCNQ5 variants in children with motor/language delay, intellectual disability (ID), and/or epilepsy by whole exome sequencing. These variants, comprising two nonsense and four missense alterations, were functionally characterized by electrophysiology in HEK293/CHO cells, together with four previously reported KCNQ5 missense variants (Lehman A, Thouta S, Mancini GM, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R; CAUSES Study; EPGEN Study; Guella I, McKenzie MB, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T. Am J Hum Genet 101: 65-74, 2017). Surprisingly, all eight missense variants resulted in gain of function (GOF) due to hyperpolarized voltage dependence of activation or slowed deactivation kinetics, whereas the two nonsense variants were confirmed to be loss of function (LOF). One severe GOF allele (P369T) was tested and found to extend a dominant GOF effect to heteromeric KCNQ5/3 channels. Clinical presentations were associated with altered KCNQ5 channel gating: milder presentations with LOF or smaller GOF shifts in voltage dependence [change in voltage at half-maximal conduction (ΔV50) = ∼-15 mV] and severe presentations with larger GOF shifts in voltage dependence (ΔV50 = ∼-30 mV). To examine LOF pathogenicity, two Kcnq5 LOF mouse lines were created with CRISPR/Cas9. Both lines exhibited handling- and thermal-induced seizures and abnormal cortical EEGs consistent with epileptiform activity. Our study thus provides evidence for in vivo KCNQ5 LOF pathogenicity and strengthens the contribution of both LOF and GOF mutations to global pediatric neurological impairment, including ID/epilepsy.NEW & NOTEWORTHY Six novel de novo human KCNQ5 variants were identified from children with neurodevelopmental delay, intellectual disability, and/or epilepsy. Expression of these variants along with four previously reported KCNQ5 variants from a similar cohort revealed GOF potassium channels, negatively shifted in V50 of activation and/or delayed deactivation kinetics. GOF is extended to KCNQ5/3 heteromeric channels, making these the predominant channels affected in heterozygous de novo patients. Kcnq5 LOF mice exhibited seizures, consistent with in vivo pathogenicity.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Animales , Niño , Cricetinae , Cricetulus , Epilepsia/genética , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Canales de Potasio KCNQ , Ratones , Mutación Missense , Convulsiones
4.
Am J Hum Genet ; 105(3): 606-615, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474318

RESUMEN

Cerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH). We performed exome sequencing in 282 individuals from 100 families with DWM or CBLH, and we established a molecular diagnosis in 36 of 100 families, with a significantly higher yield for CBLH (51%) than for DWM (16%). The 41 variants impact 27 neurodevelopmental-disorder-associated genes, thus demonstrating that CBLH and DWM are often features of monogenic neurodevelopmental disorders. Though only seven monogenic causes (19%) were identified in more than one individual, neuroimaging review of 131 additional individuals confirmed cerebellar abnormalities in 23 of 27 genetic disorders (85%). Prenatal risk factors were frequently found among individuals without a genetic diagnosis (30 of 64 individuals [47%]). Single-cell RNA sequencing of prenatal human cerebellar tissue revealed gene enrichment in neuronal and vascular cell types; this suggests that defective vasculogenesis may disrupt cerebellar development. Further, de novo gain-of-function variants in PDGFRB, a tyrosine kinase receptor essential for vascular progenitor signaling, were associated with CBLH, and this discovery links genetic and non-genetic etiologies. Our results suggest that genetic defects impact specific cerebellar cell types and implicate abnormal vascular development as a mechanism for cerebellar malformations. We also confirmed a major contribution for non-genetic prenatal factors in individuals with cerebellar abnormalities, substantially influencing diagnostic evaluation and counseling regarding recurrence risk and prognosis.


Asunto(s)
Cerebelo/anomalías , Cerebelo/diagnóstico por imagen , Estudios de Cohortes , Femenino , Humanos , Masculino , Embarazo
5.
Nature ; 530(7588): 57-62, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26814967

RESUMEN

Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.


Asunto(s)
Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Meduloblastoma/clasificación , Meduloblastoma/patología , Factores de Transcripción/metabolismo , Animales , Neoplasias Cerebelosas/clasificación , Femenino , Redes Reguladoras de Genes/genética , Genes Relacionados con las Neoplasias/genética , Genes Reporteros/genética , Humanos , Masculino , Meduloblastoma/genética , Ratones , Reproducibilidad de los Resultados , Pez Cebra/genética
6.
Acta Neuropathol ; 142(4): 761-776, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34347142

RESUMEN

Dandy-Walker malformation (DWM) and Cerebellar vermis hypoplasia (CVH) are commonly recognized human cerebellar malformations diagnosed following ultrasound and antenatal or postnatal MRI. Specific radiological criteria are used to distinguish them, yet little is known about their differential developmental disease mechanisms. We acquired prenatal cases diagnosed as DWM and CVH and studied cerebellar morphobiometry followed by histological and immunohistochemical analyses. This was supplemented by laser capture microdissection and RNA-sequencing of the cerebellar rhombic lip, a transient progenitor zone, to assess the altered transcriptome of DWM vs control samples. Our radiological findings confirm that the cases studied fall within the accepted biometric range of DWM. Our histopathological analysis points to reduced foliation and inferior vermian hypoplasia as common features in all examined DWM cases. We also find that the rhombic lip, a dorsal stem cell zone that drives the growth and maintenance of the posterior vermis is specifically disrupted in DWM, with reduced proliferation and self-renewal of the progenitor pool, and altered vasculature, all confirmed by transcriptomics analysis. We propose a unified model for the developmental pathogenesis of DWM. We hypothesize that rhombic lip development is disrupted through either aberrant vascularization and/or direct insult which causes reduced proliferation and failed expansion of the rhombic lip progenitor pool leading to disproportionate hypoplasia and dysplasia of the inferior vermis. Timing of insult to the developing rhombic lip (before or after 14 PCW) dictates the extent of hypoplasia and distinguishes DWM from CVH.


Asunto(s)
Cerebelo/anomalías , Síndrome de Dandy-Walker/embriología , Síndrome de Dandy-Walker/patología , Desarrollo Fetal/fisiología , Feto/patología , Malformaciones del Sistema Nervioso/embriología , Malformaciones del Sistema Nervioso/patología , Estudios de Casos y Controles , Cerebelo/embriología , Cerebelo/patología , Discapacidades del Desarrollo/patología , Humanos , Recién Nacido
7.
Am J Hum Genet ; 99(5): 1117-1129, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773430

RESUMEN

Lissencephaly is a malformation of cortical development typically caused by deficient neuronal migration resulting in cortical thickening and reduced gyration. Here we describe a "thin" lissencephaly (TLIS) variant characterized by megalencephaly, frontal predominant pachygyria, intellectual disability, and seizures. Trio-based whole-exome sequencing and targeted re-sequencing identified recessive mutations of CRADD in six individuals with TLIS from four unrelated families of diverse ethnic backgrounds. CRADD (also known as RAIDD) is a death-domain-containing adaptor protein that oligomerizes with PIDD and caspase-2 to initiate apoptosis. TLIS variants cluster in the CRADD death domain, a platform for interaction with other death-domain-containing proteins including PIDD. Although caspase-2 is expressed in the developing mammalian brain, little is known about its role in cortical development. CRADD/caspase-2 signaling is implicated in neurotrophic factor withdrawal- and amyloid-ß-induced dendritic spine collapse and neuronal apoptosis, suggesting a role in cortical sculpting and plasticity. TLIS-associated CRADD variants do not disrupt interactions with caspase-2 or PIDD in co-immunoprecipitation assays, but still abolish CRADD's ability to activate caspase-2, resulting in reduced neuronal apoptosis in vitro. Homozygous Cradd knockout mice display megalencephaly and seizures without obvious defects in cortical lamination, supporting a role for CRADD/caspase-2 signaling in mammalian brain development. Megalencephaly and lissencephaly associated with defective programmed cell death from loss of CRADD function in humans implicate reduced apoptosis as an important pathophysiological mechanism of cortical malformation. Our data suggest that CRADD/caspase-2 signaling is critical for normal gyration of the developing human neocortex and for normal cognitive ability.


Asunto(s)
Apoptosis , Proteína Adaptadora de Señalización CRADD/genética , Caspasa 2/metabolismo , Cisteína Endopeptidasas/metabolismo , Lisencefalia/genética , Megalencefalia/genética , Neuronas/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Caspasa 2/genética , Supervivencia Celular , Clonación Molecular , Cognición , Cisteína Endopeptidasas/genética , Células Dendríticas/metabolismo , Etnicidad/genética , Genes Recesivos , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Células PC12 , Ratas , Transducción de Señal
8.
Adv Exp Med Biol ; 1046: 249-268, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29442326

RESUMEN

Zic genes are strongly expressed in the cerebellum. This feature leads to their initial identification and their name "zic," as the abbreviation of "zinc finger protein of the cerebellum." Zic gene function in cerebellar development has been investigated mainly in mice. However, association of heterozygous loss of ZIC1 and ZIC4 with Dandy-Walker malformation, a structural birth defect of the human cerebellum, highlights the clinical relevance of these studies. Two proposed mechanisms for Zic-mediated cerebellar developmental control have been documented: regulation of neuronal progenitor proliferation-differentiation and the patterning of the cerebellar primordium. Clinical studies have also revealed that ZIC1 gain of function mutations contribute to coronal craniosynostosis, a rare skull malformation. The molecular pathways contributing to these phenotypes are not fully explored; however, embryonic interactions with sonic hedgehog signaling, retinoic acid signaling, and TGFß signaling have been described during mouse cerebellar development. Further, Zic1/2 target a multitude of genes associated with cerebellar granule cell maturation during postnatal mouse cerebellar development.


Asunto(s)
Cerebelo , Craneosinostosis , Síndrome de Dandy-Walker , Células-Madre Neurales , Transducción de Señal/genética , Factores de Transcripción , Animales , Cerebelo/crecimiento & desarrollo , Cerebelo/fisiología , Craneosinostosis/genética , Craneosinostosis/metabolismo , Craneosinostosis/patología , Síndrome de Dandy-Walker/genética , Síndrome de Dandy-Walker/metabolismo , Síndrome de Dandy-Walker/patología , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(17): E1777-86, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733890

RESUMEN

Model organism studies have demonstrated that cell fate specification decisions play an important role in normal brain development. Their role in human neurodevelopmental disorders, however, is poorly understood, with very few examples described. The cerebellum is an excellent system to study mechanisms of cell fate specification. Although signals from the isthmic organizer are known to specify cerebellar territory along the anterior-posterior axis of the neural tube, the mechanisms establishing the cerebellar anlage along the dorsal-ventral axis are unknown. Here we show that the gene encoding pancreatic transcription factor PTF1A, which is inactivated in human patients with cerebellar agenesis, is required to segregate the cerebellum from more ventral extracerebellar fates. Using genetic fate mapping in mice, we show that in the absence of Ptf1a, cells originating in the cerebellar ventricular zone initiate a more ventral brainstem expression program, including LIM homeobox transcription factor 1 beta and T-cell leukemia homeobox 3. Misspecified cells exit the cerebellar anlage and contribute to the adjacent brainstem or die, leading to cerebellar agenesis in Ptf1a mutants. Our data identify Ptf1a as the first gene involved in the segregation of the cerebellum from the more ventral brainstem. Further, we propose that cerebellar agenesis represents a new, dorsal-to-ventral, cell fate misspecification phenotype in humans.


Asunto(s)
Tronco Encefálico/patología , Linaje de la Célula , Cerebelo/anomalías , Cerebelo/patología , Factores de Transcripción/deficiencia , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Glutamina/metabolismo , Humanos , Ratones , Modelos Biológicos , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
10.
Cerebellum ; 15(6): 789-828, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26439486

RESUMEN

The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.


Asunto(s)
Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Animales , Cerebelo/citología , Cerebelo/fisiopatología , Consenso , Humanos , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología
11.
PLoS Genet ; 9(10): e1003823, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098143

RESUMEN

Agenesis of the corpus callosum (ACC), cerebellar hypoplasia (CBLH), and polymicrogyria (PMG) are severe congenital brain malformations with largely undiscovered causes. We conducted a large-scale chromosomal copy number variation (CNV) discovery effort in 255 ACC, 220 CBLH, and 147 PMG patients, and 2,349 controls. Compared to controls, significantly more ACC, but unexpectedly not CBLH or PMG patients, had rare genic CNVs over one megabase (p = 1.48×10⁻³; odds ratio [OR] = 3.19; 95% confidence interval [CI] = 1.89-5.39). Rare genic CNVs were those that impacted at least one gene in less than 1% of the combined population of patients and controls. Compared to controls, significantly more ACC but not CBLH or PMG patients had rare CNVs impacting over 20 genes (p = 0.01; OR = 2.95; 95% CI = 1.69-5.18). Independent qPCR confirmation showed that 9.4% of ACC patients had de novo CNVs. These, in comparison to inherited CNVs, preferentially overlapped de novo CNVs previously observed in patients with autism spectrum disorders (p = 3.06×10⁻4; OR = 7.55; 95% CI = 2.40-23.72). Interestingly, numerous reports have shown a reduced corpus callosum area in autistic patients, and diminished social and executive function in many ACC patients. We also confirmed and refined previously known CNVs, including significantly narrowing the 8p23.1-p11.1 duplication present in 2% of our current ACC cohort. We found six novel CNVs, each in a single patient, that are likely deleterious: deletions of 1p31.3-p31.1, 1q31.2-q31.3, 5q23.1, and 15q11.2-q13.1; and duplications of 2q11.2-q13 and 11p14.3-p14.2. One ACC patient with microcephaly had a paternally inherited deletion of 16p13.11 that included NDE1. Exome sequencing identified a recessive maternally inherited nonsense mutation in the non-deleted allele of NDE1, revealing the complexity of ACC genetics. This is the first systematic study of CNVs in congenital brain malformations, and shows a much higher prevalence of large gene-rich CNVs in ACC than in CBLH and PMG.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Cerebelo/anomalías , Variaciones en el Número de Copia de ADN , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Sistema Nervioso/genética , Adolescente , Adulto , Agenesia del Cuerpo Calloso/patología , Cerebelo/patología , Niño , Preescolar , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Femenino , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Recién Nacido , Masculino , Malformaciones del Desarrollo Cortical/patología , Persona de Mediana Edad , Malformaciones del Sistema Nervioso/patología , Polimorfismo de Nucleótido Simple
12.
PLoS Genet ; 9(12): e1003967, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339789

RESUMEN

Mouse early transposon insertions are responsible for ~10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-ß early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5' LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development.


Asunto(s)
Elementos Transponibles de ADN/genética , Genes Ligados a X , Mutagénesis Insercional/genética , Empalme del ARN/genética , Animales , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Mapeo Cromosómico , Fosfatasas de Especificidad Dual/genética , Regulación de la Expresión Génica , Genes Dominantes , Ratones , Fenotipo
13.
Cerebellum ; 14(3): 292-307, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25626522

RESUMEN

This study represents the first detailed analysis of the spontaneous neurological mouse mutant, tippy, uncovering its unique cerebellar phenotype. Homozygous tippy mutant mice are small, ataxic, and die around weaning. Although the cerebellum shows grossly normal foliation, tippy mutants display a complex cerebellar Purkinje cell phenotype consisting of abnormal dendritic branching with immature spine features and patchy, non-apoptotic cell death that is associated with widespread dystrophy and degeneration of the Purkinje cell axons throughout the white matter, the cerebellar nuclei, and the vestibular nuclei. Moderate anatomical abnormalities of climbing fiber innervation of tippy mutant Purkinje cells were not associated with changes in climbing fiber-EPSC amplitudes. However, decreased ESPC amplitudes were observed in response to parallel fiber stimulation and correlated well with anatomical evidence for patchy dark cell degeneration of Purkinje cell dendrites in the molecular layer. The data suggest that the Purkinje neurons are a primary target of the tippy mutation. Furthermore, we hypothesize that the Purkinje cell axonal pathology together with disruptions in the balance of climbing fiber and parallel fiber-Purkinje cell input in the cerebellar cortex underlie the ataxic phenotype in these mice. The constellation of Purkinje cell dendritic malformation and degeneration phenotypes in tippy mutants is unique and has not been reported in any other neurologic mutant. Fine mapping of the tippy mutation to a 2.1 MB region of distal chromosome 9, which does not encompass any gene previously implicated in cerebellar development or neuronal degeneration, confirms that the tippy mutation identifies novel biology and gene function.


Asunto(s)
Ataxia/patología , Corteza Cerebelosa/citología , Ratones Mutantes Neurológicos , Morfogénesis , Degeneración Nerviosa/psicología , Células de Purkinje/patología , Animales , Ataxia/fisiopatología , Axones/patología , Dendritas/patología , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo
14.
Dev Dyn ; 243(11): 1487-98, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25178196

RESUMEN

BACKGROUND: Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected. RESULTS: Zic1/Zic4 double mutants don't exhibit any apparent defects in inner ear morphology. By contrast, inner ears from Zic2(kd/kd) and Zic2(Ku/Ku) mutants have severe but variable morphological defects in endolymphatic duct/sac and semicircular canal formation and in cochlear extension in the inner ear. Analysis of otocyst patterning in the Zic2(Ku/Ku) mutants by in situ hybridization showed changes in the expression patterns of Gbx2 and Pax2. CONCLUSIONS: The experiments provide the first genetic evidence that the Zic genes are required for morphogenesis of the inner ear. Zic2 loss-of-function doesn't prevent initial otocyst patterning but leads to molecular abnormalities concomitant with morphogenesis of the endolymphatic duct. Functional hearing deficits often accompany inner ear dysmorphologies, making Zic2 a novel candidate gene for ongoing efforts to identify the genetic basis of human hearing loss.


Asunto(s)
Oído Interno/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Morfogénesis/fisiología , Fenotipo , Transducción de Señal/genética , Factores de Transcripción/genética , Animales , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Ratones , Mutación/genética , Factores de Transcripción/metabolismo
15.
J Neurosci ; 33(16): 6834-44, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595742

RESUMEN

The gene encoding the WD repeat-containing protein 81 (WDR81) has recently been described as the disease locus in a consanguineous family that suffers from cerebellar ataxia, mental retardation, and quadrupedal locomotion syndrome (CAMRQ2). Adult mice from the N-ethyl-N-nitrosourea-induced mutant mouse line nur5 display tremor and an abnormal gait, as well as Purkinje cell degeneration and photoreceptor cell loss. We have used polymorphic marker mapping to demonstrate that affected nur5 mice carry a missense mutation, L1349P, in the Wdr81 gene. Moreover, homozygous nur5 mice that carry a wild-type Wdr81 transgene are rescued from the abnormal phenotype, indicating that Wdr81 is the causative gene in nur5. WDR81 is expressed in Purkinje cells and photoreceptor cells, among other CNS neurons, and like the human mutation, the nur5 modification lies in the predicted major facilitator superfamily domain of the WDR81 protein. Electron microscopy analysis revealed that a subset of mitochondria in Purkinje cell dendrites of the mutant animals displayed an aberrant, large spheroid-like structure. Moreover, immunoelectron microscopy and analysis of mitochondrial-enriched cerebellum fractions indicate that WDR81 is localized in mitochondria of Purkinje cell neurons. Because the nur5 mouse mutant demonstrates phenotypic similarities to the human disease, it provides a valuable genetic model for elucidating the pathogenic mechanism of the WDR81 mutation in CAMRQ2.


Asunto(s)
Apraxia de la Marcha/genética , Apraxia de la Marcha/patología , Proteínas Nucleares/metabolismo , Células Fotorreceptoras/metabolismo , Células de Purkinje/metabolismo , Actinas/metabolismo , Alquilantes/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Calbindinas , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cerebelo/patología , Mapeo Cromosómico , Modelos Animales de Enfermedad , Etilnitrosourea/farmacología , Lateralidad Funcional , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Mutagénesis/efectos de los fármacos , Mutación Missense/efectos de los fármacos , Mutación Missense/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/ultraestructura , Prostaglandina-Endoperóxido Sintasas/metabolismo , Células de Purkinje/efectos de los fármacos , Células de Purkinje/ultraestructura , ARN Mensajero/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Análisis de Secuencia de ADN , Transfección
16.
Development ; 138(6): 1207-16, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21307096

RESUMEN

Heterozygous deletions encompassing the ZIC1;ZIC4 locus have been identified in a subset of individuals with the common cerebellar birth defect Dandy-Walker malformation (DWM). Deletion of Zic1 and Zic4 in mice produces both cerebellar size and foliation defects similar to human DWM, confirming a requirement for these genes in cerebellar development and providing a model to delineate the developmental basis of this clinically important congenital malformation. Here, we show that reduced cerebellar size in Zic1 and Zic4 mutants results from decreased postnatal granule cell progenitor proliferation. Through genetic and molecular analyses, we show that Zic1 and Zic4 have Shh-dependent function promoting proliferation of granule cell progenitors. Expression of the Shh-downstream genes Ptch1, Gli1 and Mycn was downregulated in Zic1/4 mutants, although Shh production and Purkinje cell gene expression were normal. Reduction of Shh dose on the Zic1(+/-);Zic4(+/-) background also resulted in cerebellar size reductions and gene expression changes comparable with those observed in Zic1(-/-);Zic4(-/-) mice. Zic1 and Zic4 are additionally required to pattern anterior vermis foliation. Zic mutant folial patterning abnormalities correlated with disrupted cerebellar anlage gene expression and Purkinje cell topography during late embryonic stages; however, this phenotype was Shh independent. In Zic1(+/-);Zic4(+/-);Shh(+/-), we observed normal cerebellar anlage patterning and foliation. Furthermore, cerebellar patterning was normal in both Gli2-cko and Smo-cko mutant mice, where all Shh function was removed from the developing cerebellum. Thus, our data demonstrate that Zic1 and Zic4 have both Shh-dependent and -independent roles during cerebellar development and that multiple developmental disruptions underlie Zic1/4-related DWM.


Asunto(s)
Cerebelo/anomalías , Cerebelo/embriología , Síndrome de Dandy-Walker/embriología , Síndrome de Dandy-Walker/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Animales Recién Nacidos , Proliferación Celular , Cerebelo/metabolismo , Cerebelo/patología , Síndrome de Dandy-Walker/metabolismo , Síndrome de Dandy-Walker/patología , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Humanos , Ratones , Ratones Noqueados , Tamaño de los Órganos/genética , Embarazo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
17.
Am J Med Genet A ; 164A(6): 1503-11, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24700709

RESUMEN

The number of single genes associated with neurodevelopmental disorders has increased dramatically over the past decade. The identification of causative genes for these disorders is important to clinical outcome as it allows for accurate assessment of prognosis, genetic counseling, delineation of natural history, inclusion in clinical trials, and in some cases determines therapy. Clinicians face the challenge of correctly identifying neurodevelopmental phenotypes, recognizing syndromes, and prioritizing the best candidate genes for testing. However, there is no central repository of definitions for many phenotypes, leading to errors of diagnosis. Additionally, there is no system of levels of evidence linking genes to phenotypes, making it difficult for clinicians to know which genes are most strongly associated with a given condition. We have developed the Developmental Brain Disorders Database (DBDB: https://www.dbdb.urmc.rochester.edu/home), a publicly available, online-curated repository of genes, phenotypes, and syndromes associated with neurodevelopmental disorders. DBDB contains the first referenced ontology of developmental brain phenotypes, and uses a novel system of levels of evidence for gene-phenotype associations. It is intended to assist clinicians in arriving at the correct diagnosis, select the most appropriate genetic test for that phenotype, and improve the care of patients with developmental brain disorders. For researchers interested in the discovery of novel genes for developmental brain disorders, DBDB provides a well-curated source of important genes against which research sequencing results can be compared. Finally, DBDB allows novel observations about the landscape of the neurogenetics knowledge base.


Asunto(s)
Encefalopatías , Encéfalo/anomalías , Bases de Datos Genéticas , Bases del Conocimiento , Encéfalo/embriología , Encefalopatías/diagnóstico , Encefalopatías/embriología , Encefalopatías/genética , Niño , Discapacidades del Desarrollo/genética , Humanos , Internet
18.
Pediatr Res ; 75(3): 389-94, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24346111

RESUMEN

BACKGROUND: Cerebellar hypoplasia is a common problem in preterm infants and infants suffering from intraventricular hemorrhage (IVH). To evaluate the effects of IVH on cerebellar growth and development, we used a neonatal rabbit model of systemic glycerol to produce IVH. METHODS: New Zealand White rabbit kits were surgically delivered 2 d preterm and treated with intraperitoneal glycerol (3.25-6.5 g/kg). Controls were born at term. IVH was documented by ultrasonography. Brain volumes determined by magnetic resonance imaging, cerebellar foliation, proliferation (Ki-67), and Purkinje cell density were assessed at 2 wk of life. Tissue glycerol and glutathione concentrations were measured. RESULTS: Glycerol increased IVH, subarachnoid hemorrhages, and mortality in a dose-dependent manner. Total cerebellar volumes, cerebellar foliation, and cerebellar proliferation were decreased in a dose-dependent manner. Glycerol accumulated rapidly in blood, brain, and liver and was associated with increased glutathione concentration. All of these results were independent of IVH status. CONCLUSION: Cerebellar hypoplasia was induced after glycerol administration in a dose-dependent manner. Given the rapid tissue accumulation of glycerol, dose-dependent decrease in brain growth, and lack of IVH effect on measured outcomes, we question the validity of this model because glycerol toxicity cannot be ruled out. A better physiological model of IVH is needed.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Cerebelo/anomalías , Glicerol/farmacología , Ventrículos Cardíacos/patología , Hemorragia/complicaciones , Malformaciones del Sistema Nervioso/etiología , Conejos/crecimiento & desarrollo , Animales , Animales Recién Nacidos/sangre , Estudios de Casos y Controles , Cerebelo/patología , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/patología , Relación Dosis-Respuesta a Droga , Glicerol/administración & dosificación , Glicerol/sangre , Hemorragia/inducido químicamente , Hemorragia/diagnóstico por imagen , Hemorragia/patología , Inyecciones Intraperitoneales , Imagen por Resonancia Magnética , Malformaciones del Sistema Nervioso/patología , Conejos/sangre , Factores de Tiempo , Ultrasonografía
19.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328221

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic islet ß-cells are attacked by the immune system, resulting in insulin deficiency and hyperglycemia. One of the top non-synonymous single-nucleotide polymorphisms (SNP) associated with T1D is in the interferon-induced helicase C domain-containing protein 1 ( IFIH1 ), which encodes an anti-viral cytosolic RNA sensor. This SNP results in an alanine to threonine substitution at amino acid 946 (IFIH1 A946T ) and confers an increased risk for several autoimmune diseases, including T1D. We hypothesized that the IFIH1 A946T risk variant, ( IFIH1 R ) would promote T1D pathogenesis by stimulating type I interferon (IFN I) signaling leading to immune cell alterations. To test this, we developed Ifih1 R knock-in mice on the non-obese diabetic (NOD) mouse background, a spontaneous T1D model. Our results revealed a modest increase in diabetes incidence and insulitis in Ifih1 R compared to non-risk Ifih1 ( Ifih1 NR ) mice and a significant acceleration of diabetes onset in Ifih1 R females. Ifih1 R mice exhibited a significantly enhanced interferon stimulated gene (ISG) signature compared to Ifih1 NR , indicative of increased IFN I signaling. Ifih1 R mice exhibited an increased frequency of plasma cells as well as tissue-dependent changes in the frequency and activation of CD8 + T cells. Our results indicate that IFIH1 R may contribute to T1D pathogenesis by altering the frequency and activation of immune cells. These findings advance our knowledge on the connection between the rs1990760 variant and T1D. Further, these data are the first to demonstrate effects of Ifih1 R in NOD mice, which will be important to consider for the development of therapeutics for T1D.

20.
Front Immunol ; 15: 1349601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487540

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic islet ß-cells are attacked by the immune system, resulting in insulin deficiency and hyperglycemia. One of the top non-synonymous single-nucleotide polymorphisms (SNP) associated with T1D is in the interferon-induced helicase C domain-containing protein 1 (IFIH1), which encodes an anti-viral cytosolic RNA sensor. This SNP results in an alanine to threonine substitution at amino acid 946 (IFIH1A946T) and confers an increased risk for several autoimmune diseases, including T1D. We hypothesized that the IFIH1A946T risk variant, (IFIH1R) would promote T1D pathogenesis by stimulating type I interferon (IFN I) signaling leading to immune cell alterations. To test this, we developed Ifih1R knock-in mice on the non-obese diabetic (NOD) mouse background, a spontaneous T1D model. Our results revealed a modest increase in diabetes incidence and insulitis in Ifih1R compared to non-risk Ifih1 (Ifih1NR) mice and a significant acceleration of diabetes onset in Ifih1R females. Ifih1R mice exhibited a significantly enhanced interferon stimulated gene (ISG) signature compared to Ifih1NR, indicative of increased IFN I signaling. Ifih1R mice exhibited an increased frequency of plasma cells as well as tissue-dependent changes in the frequency and activation of CD8+ T cells. Our results indicate that IFIH1R may contribute to T1D pathogenesis by altering the frequency and activation of immune cells. These findings advance our knowledge on the connection between the rs1990760 variant and T1D. Further, these data are the first to demonstrate effects of Ifih1R in NOD mice, which will be important to consider for the development of therapeutics for T1D.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Femenino , Animales , Ratones , Helicasa Inducida por Interferón IFIH1/genética , ARN Helicasas DEAD-box/metabolismo , Linfocitos T CD8-positivos/metabolismo , Predisposición Genética a la Enfermedad , Ratones Endogámicos NOD , Enfermedades Autoinmunes/genética , Interferones/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda