Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Cell ; 150(6): 1107-20, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980975

RESUMEN

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Genes Relacionados con las Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Pulmonares/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Exoma , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación , Tasa de Mutación
2.
Lancet Oncol ; 21(12): 1589-1601, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33125909

RESUMEN

BACKGROUND: The Lung Cancer Master Protocol (Lung-MAP; S1400) is a completed biomarker-driven master protocol designed to address an unmet need for better therapies for squamous non-small-cell lung cancer. Lung-MAP (S1400) was created to establish an infrastructure for biomarker screening and rapid regulatory intent evaluation of targeted therapies and was the first biomarker-driven master protocol initiated with the US National Cancer Institute (NCI). METHODS: Lung-MAP (S1400) was done within the National Clinical Trials Network of the NCI using a public-private partnership. Eligible patients were aged 18 years or older, had stage IV or recurrent squamous non-small-cell lung cancer, had previously been treated with platinum-based chemotherapy, and had an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2. The study included a screening component using the FoundationOne assay (Foundation Medicine, Cambridge, MA, USA) for next-generation sequencing, and a clinical trial component with biomarker-driven substudies and non-match substudies for patients who were ineligible for biomarker-driven substudies. Patients were pre-screened and received their substudy assignment upon progression, or they were screened at progression and received their substudy assignment upon completion of testing. Patients could enrol onto additional substudies after progression on a substudy. The study is registered with ClinicalTrials.gov, NCT02154490, and all research related to Lung-MAP (S1400) is completed. FINDINGS: Between June 16, 2014, and Jan 28, 2019, 1864 patients enrolled and 1841 (98·9%) submitted tissue. 1674 (90·9%) of 1841 patients had biomarker results, and 1404 (83·9%) of 1674 patients received a substudy assignment. Of the assigned patients, 655 (46·7%) registered to a substudy. The biomarker-driven substudies evaluated taselisib (targeting PIK3CA alterations), palbociclib (cell cycle gene alterations), AZD4547 (FGFR alteration), rilotumumab plus erlotinib (MET), talazoparib (homologous recombination repair deficiency), and telisotuzumab vedotin (MET). The non-match substudies evaluated durvalumab, and nivolumab plus ipilimumab for anti-PD-1 or anti-PD-L1-naive disease, and durvalumab plus tremelimumab for anti-PD-1 or anti-PD-L1 relapsed disease. Combining data from the substudies, ten (7·0%) of 143 patients responded to targeted therapy, 53 (16·8%) of 315 patients responded to anti-PD-1 or anti-PD-L1 therapy for immunotherapy-naive disease, and three (5·4%) of 56 responded to docetaxel in the second line of therapy. Median overall survival was 5·9 months (95% CI 4·8-7·8) for the targeted therapy groups, 7·7 months (6·7-9·2) for the docetaxel groups, and 10·8 months (9·4-12·3) for the anti-PD-1 or anti-PD-L1-containing groups. Median progression-free survival was 2·5 months (95% CI 1·7-2·8) for the targeted therapy groups, 2·7 months (1·9-2·9) for the docetaxel groups, and 3·0 months (2·7-3·9) for the anti-PD-1 or anti-PD-L1-containing groups. INTERPRETATION: Lung-MAP (S1400) met its goal to quickly address biomarker-driven therapy questions in squamous non-small-cell lung cancer. In early 2019, a new screening protocol was implemented expanding to all histological types of non-small-cell lung cancer and to add focus on immunotherapy combinations for anti-PD-1 and anti-PD-L1 therapy-relapsed disease. With these changes, Lung-MAP continues to meet its goal to focus on unmet needs in the treatment of advanced lung cancers. FUNDING: US National Institutes of Health, and AbbVie, Amgen, AstraZeneca, Bristol Myers Squibb, Genentech, and Pfizer through the Foundation for the National Institutes of Health.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Pulmonares/tratamiento farmacológico , Terapia Molecular Dirigida , Medicina de Precisión , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Toma de Decisiones Clínicas , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Supervivencia sin Progresión , Factores de Tiempo , Adulto Joven
3.
Oncologist ; 25(11): e1803-e1806, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32949172

RESUMEN

BACKGROUND: Precision oncology uses molecular profiling of tumors to identify biomarker-tailored therapies for patients in the hope of improving outcomes. Typically, only a minority of patients receives evaluable matched treatment. This study explored the reasons for attrition on a precision medicine trial. MATERIALS AND METHODS: Study participants were 190 adult patients who consented to the I-PREDICT (Investigation of molecular Profile-Related Evidence Determining Individualized Cancer Therapy) trial. Patients had metastatic and/or unresectable incurable malignancies. Patients who were not evaluable were analyzed. RESULTS: Of consented patients, 44% were not evaluable. Men were twice as likely to be not evaluable as women. Prominently, 45% of patients who were not evaluable dropped off because of death, hospice referral, or decline in organ function. CONCLUSION: Health deterioration of consented patients is a significant barrier to being evaluable on the I-PREDICT trial. These data suggest that patients are enrolled on precision oncology trials too late in their disease course or with excessive disease burden.


Asunto(s)
Neoplasias , Adulto , Femenino , Humanos , Masculino , Oncología Médica , Neoplasias/tratamiento farmacológico , Medicina de Precisión
4.
Oncologist ; 25(1): e39-e47, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604903

RESUMEN

PURPOSE: Amplifications of receptor tyrosine kinases (RTKS) are therapeutic targets in multiple tumor types (e.g. HER2 in breast cancer), and amplification of the chromosome 4 segment harboring the three RTKs KIT, PDGFRA, and KDR (4q12amp) may be similarly targetable. The presence of 4q12amp has been sporadically reported in small tumor specific series but a large-scale analysis is lacking. We assess the pan-cancer landscape of 4q12amp and provide early clinical support for the feasibility of targeting this amplicon. EXPERIMENTAL DESIGN: Tumor specimens from 132,872 patients with advanced cancer were assayed with hybrid capture based comprehensive genomic profiling which assays 186-315 genes for all classes of genomic alterations, including amplifications. Baseline demographic data were abstracted, and presence of 4q12amp was defined as 6 or more copies of KIT/KDR/PDGFRA. Concurrent alterations and treatment outcomes with matched therapies were explored in a subset of cases. RESULTS: Overall 0.65% of cases harbored 4q12amp at a median copy number of 10 (range 6-344). Among cancers with >100 cases in this series, glioblastomas, angiosarcomas, and osteosarcomas were enriched for 4q12amp at 4.7%, 4.8%, and 6.4%, respectively (all p < 0.001), giving an overall sarcoma (n = 6,885) incidence of 1.9%. Among 99 pulmonary adenocarcinoma cases harboring 4q12amp, 50 (50%) lacked any other known driver of NSLCC. Four index cases plus a previously reported case on treatment with empirical TKIs monotherapy had stable disease on average exceeding 20 months. CONCLUSION: We define 4q12amp as a significant event across the pan-cancer landscape, comparable to known pan-cancer targets such as NTRK and microsatellite instability, with notable enrichment in several cancers such as osteosarcoma where standard treatment is limited. The responses to available TKIs observed in index cases strongly suggest 4q12amp is a druggable oncogenic target across cancers that warrants a focused drug development strategy. IMPLICATIONS FOR PRACTICE: Coamplification of the receptor tyrosine kinases (rtks) KIT/KDR/PDGFRA (4q12amp) is present broadly across cancers (0.65%), with enrichment in osteosarcoma and gliomas. Evidence for this amplicon having an oncogenic role is the mutual exclusivity of 4q12amp to other known drivers in 50% of pulmonary adenocarcinoma cases. Furthermore, preliminary clinical evidence for driver status comes from four index cases of patients empirically treated with commercially available tyrosine kinase inhibitors with activity against KIT/KDR/PDGFRA who had stable disease for 20 months on average. The sum of these lines of evidence suggests further clinical and preclinical investigation of 4q12amp is warranted as the possible basis for a pan-cancer drug development strategy.


Asunto(s)
Amplificación de Genes/genética , Neoplasias/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Humanos , Persona de Mediana Edad , Adulto Joven
5.
Gastroenterology ; 156(8): 2242-2253.e4, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30836094

RESUMEN

BACKGROUND & AIMS: It has been a challenge to select treatment for patients with pancreatic ductal adenocarcinomas (PDACs) based on genome alterations. We performed targeted genomic profile analyses of a large number of PDACs to assess the full spectrum of actionable genomic alterations. METHODS: We performed targeted genomic profile analyses of 3594 PDAC samples from an international cohort, including capture-based targeted genomic profiling of as many as 315 cancer-associated genes and intron regions of 28 genes that are rearranged in cancer cells. Tumor mutation burden (TMB) and microsatellite instability (MSI) status were also assessed. TMB was calculated across a 1.14-megabase region; TMB-high was defined as ≥20 mutations/megabase. MSI-high status was assigned based on analysis of 114 intron homopolymer loci. RESULTS: KRAS, TP53, CDKN2A, and SMAD4 were the most frequently altered genes in PDAC. We found KRAS mutations in 88% of samples. Among PDACs without mutations in KRAS, we found alterations in genes whose products are in the mitogen-activated protein kinase signaling pathway and are candidate drug targets (actionable targets, n = 132; 4%), as well as gene fusions (n = 51), gene amplifications (n = 35), genes with missense mutations (n = 30), and genes that contain deletions (n = 16). Many of these encode proteins in receptor tyrosine kinase, RAS, or mitogen-activated protein kinase signaling pathways. Aside from TP53, alterations in genes encoding DNA damage repair proteins (BRCA and FANC) were detected in 14% of PDACs. Among PDACs evaluated for MSI (n = 2563) and TMB (n = 1021), MSI-high and/or TMB-high phenotypes were detected in 0.5% of samples. Alterations in FGF23, CCND2, PIK3CA, and FGF6 were more commonly detected in intraductal papillary mucinous neoplasm-associated PDACs. CONCLUSIONS: In targeted genomic profile analyses of 3594 PDACs, we found 17% to contain genomic alterations that might make the tumor cells susceptible to currently used anticancer agents. We identified mutations in genes that could contribute to progression of intraductal papillary mucinous neoplasms into malignancies. These alterations might be used as biomarkers for early detection.


Asunto(s)
Adenocarcinoma Mucinoso/genética , Antineoplásicos/administración & dosificación , Carcinoma Ductal Pancreático/genética , Variación Genética/efectos de los fármacos , Neoplasias Pancreáticas/genética , Adenocarcinoma Mucinoso/diagnóstico , Adenocarcinoma Mucinoso/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/epidemiología , Mapeo Cromosómico/métodos , Estudios de Cohortes , Femenino , Factor-23 de Crecimiento de Fibroblastos , Regulación Neoplásica de la Expresión Génica , Variación Estructural del Genoma , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Invasividad Neoplásica/patología , Estadificación de Neoplasias , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estudios Retrospectivos , Adulto Joven
6.
Oncology ; 98(12): 905-912, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32966992

RESUMEN

PURPOSE: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal soft tissue neoplasm often linked to mTOR pathway activation via TSC2 mutation. We analyzed a series of 31 consecutive metastatic PEComa (mPEComa) cases using a combined DNA/RNA hybrid capture-based comprehensive genomic profiling (CGP) assay to assess the genomic landscape of mPEComa. PATIENTS AND METHODS: Formalin-fixed, paraffin-embedded (FFPE) blocks or slides were obtained from tumors from 31 unique patients with mPEC-oma. DNA and RNA were extracted and CGP was performed on 405 genes using a targeted next-generation sequencing (NGS) assay in a CLIA-certified lab. RESULTS: All cases had locally advanced or metastatic disease, and 58% of patients were female with a median age of 50 years (range 8-76), and 17 and 14 specimens were from primary and metastatic sites, respectively. One hundred genomic alterations were identified in the cohort, with an average of 3.2 genomic alterations/case including alterations in TSC2 32.3% of cases (10), TSC1 9.6% (3), TFE3 16.1% (5, all fusions), and folliculin (FLCN) 6.4% (2), with all occurring in mutually exclusive fashion. Of TSC2 mutant cases, 70% had biallelic inactivation of this locus, as were 100% of TSC1 mutant cases. Two TSC1/2 wildtype cases harbored truncating mutations in FLCN, both of which were under LOH. Five TFE3 fusion cases were identified including the novel 5' fusion partner ZC3H4. CONCLUSIONS: We describe for the first time mPEComa cases with FLCN mutations under LOH, further characterizing dysregulation of the mTOR pathway as a unifying theme in mPEC-oma. Cumulatively, we demonstrate the feasibility and potential utility of segregating mPEComa by TSC, TFE3, and FLCN status via CGP in clinical care.


Asunto(s)
Genómica , Pérdida de Heterocigocidad/genética , Neoplasias de Células Epitelioides Perivasculares/genética , Adolescente , Adulto , Anciano , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Niño , ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Neoplasias de Células Epitelioides Perivasculares/patología , Proteínas Proto-Oncogénicas , ARN/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor , Adulto Joven
7.
BJU Int ; 125(5): 739-746, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31985116

RESUMEN

OBJECTIVE: To review the genomic landscape of advanced urothelial carcinoma (UC) to assess the frequencies of EGFR and ERBB2 (HER2) alterations. MATERIALS AND METHODS: Tumour specimens from 3753 patients with advanced UC were assayed with hybrid capture-based comprehensive genomic profiling of 180-395 genes. Tumour mutational burden (TMB) was assessed on 0.8 or 1.1 Mb of DNA, and is reported as mutations per megabase. RESULTS: In 3753 cases of UC, EGFR alterations were detected in 4.1% (154) and were most commonly amplifications (64%; 99/154), while exon 20 insertions (EGFRexon20ins ) were the second most common alteration (18%; 27/154). Alterations in ERBB2 were observed in 15% (552/3753) of cases and, similarly, ERBB2 amplification was the most commonly observed alteration (278/552; 50%); ERBB2exon20ins occurred in 3.6% (20/552) of cases. EGFRexon20ins and ERBB2exon20ins occurred in younger patients (median age 62 vs 69 years, P = 2.6E-2 and 60 vs 68 years, P = 7.8E-4), and these cases had significantly lower TMB (median 3.6 vs 7.2, P = 2.7E-4 and 2.5 vs 10, P = 1.2E-7) and less frequent TP53 alterations (3.7% vs 83%, P = 4.3E-14 and 20% vs 68%, P = 9.8E-4) compared to cases with other EGFR or ERBB2 alterations. CONCLUSION: EGFR and ERBB2 alterations occur in 4% and 15% of UC, respectively. EGFRexon20ins and ERBB2exon20ins were present in 0.7% and 0.5% of UC overall and collectively define a small, but distinct, subset of UC with infrequent co-occurrence of other drivers and low TMB. Given recent promising clinical studies of inhibitors with activity against exon 20 insertions in non-small cell lung cancer, consideration should be given to developing a trial inclusive of patients with UC harbouring these alterations.


Asunto(s)
Carcinoma de Células Transicionales/genética , ADN de Neoplasias/genética , Mutación , Receptor ErbB-2/genética , Neoplasias Urológicas/genética , Anciano , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/patología , Receptores ErbB/biosíntesis , Receptores ErbB/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptor ErbB-2/biosíntesis , Neoplasias Urológicas/metabolismo , Neoplasias Urológicas/patología
8.
Cancer ; 125(7): 1185-1199, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30582752

RESUMEN

BACKGROUND: The phosphatidylinositol 3-kinase (PI3K) pathway is frequently altered in cancer. This report describes the landscape of PI3K alterations in solid tumors as well as co-alterations serving as potential resistance/attenuation mechanisms. METHODS: Consecutive samples were analyzed in a commercial Clinical Laboratory Improvement Amendment-certified laboratory using comprehensive genomic profiling performed by next-generation sequencing (315 genes). The co-alterations evaluated included the Erb-B2 receptor tyrosine kinase 2 (ERBB2), ERBB3, ERBB4, RAS, MET proto-oncogene tyrosine kinase (MET), and mitogen-activated protein kinase kinase (MAP2K) genes as well as tumor protein 53 (TP53), estrogen receptor 1 (ESR1), and androgen receptor (AR). RESULTS: Alterations in any of 18 PI3K-pathway associated genes were identified in 44% of 60,991 tumors. Although single base and insertions/deletions (indels) were the most frequent alterations, copy number changes and rearrangements were identified in 11% and 0.9% of patients, respectively. Overall, the most frequently altered genes were PIK3 catalytic subunit α (PIK3CA) (13%), phosphatase and tensin homolog (PTEN) (9%), and serine/threonine kinase 11 (STK11) (5%). Tumor types that frequently harbored at least 1 PI3K alteration were uterine (77%), cervical (62%), anal (59%), and breast (58%) cancers. Alterations also were discerned frequently in tumors with carcinosarcoma (89%) and squamous cell carcinoma (62%) histologies. Tumors with a greater likelihood of co-occurring PI3K pathway and MAPK pathway alterations included colorectal cancers (odds ratio [OR], 1.64; P < .001), mesotheliomas (OR, 2.67; P = .024), anal cancers (OR, 1.98; P = .03), and nonsquamous head and neck cancers (OR, 2.03; P = .019). The co-occurrence of ESR1 and/or AR alterations with PI3K alterations was statistically significant in bladder, colorectal, uterine, prostate, and unknown primary cancers. CONCLUSIONS: Comprehensive genomic profiling reveals altered PI3K-related genes in 44% of solid malignancies, including rare disease and histology types. The frequency of alterations and the co-occurrence of resistance pathways vary by tumor type, directly affecting opportunities for targeted therapy.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Neoplasias/genética , Fosfohidrolasa PTEN/genética , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Receptor alfa de Estrógeno/genética , Femenino , Genes erbB/genética , Humanos , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Terapia Molecular Dirigida , Neoplasias/patología , Oportunidad Relativa , Fosfatidilinositol 3-Quinasas/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-met/genética , Receptores Androgénicos/genética , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Proteínas ras/genética
9.
Oncologist ; 24(5): 657-663, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30683711

RESUMEN

BACKGROUND: BRAF and MEK inhibitors are approved for BRAF V600-mutated advanced melanoma, with response rates of up to 70%. Responses to targeted therapies have also been observed for diverse non-V600 BRAF alterations. Thus, sensitive, accurate, and broad detection of BRAF alterations is critical to match patients with available targeted therapies. MATERIALS AND METHODS: Pathology reports were reviewed for 385 consecutive melanoma cases with BRAF mutations or rearrangements identified using a hybrid capture-based next-generation sequencing comprehensive genomic profiling (CGP) assay during the course of clinical care. RESULTS: Records of prior BRAF molecular testing were available for 79 (21%) cases. Of cases with BRAF V600 mutations, 11/57 (19%) with available data were negative by prior BRAF testing. Prior negative BRAF results were also identified in 16/20 (80%) cases with non-V600 mutations, 2 of which harbored multiple BRAF alterations, and in 2/2 (100%) cases with activating BRAF fusions. Clinical outcomes for a subset of patients are presented. CONCLUSION: CGP identifies diverse activating BRAF alterations in a significant fraction of cases with prior negative testing. Given the proven clinical benefit of BRAF/MEK inhibitors in BRAF-mutated melanoma, CGP should be considered for patients with metastatic melanoma, particularly if other testing is negative. IMPLICATIONS FOR PRACTICE: Published guidelines for melanoma treatment recommend BRAF mutational analysis, but little guidance is provided as to selection criteria for testing methodologies, or as to clinical implications for non-V600 alterations. This study found that hybrid capture-based next-generation sequencing can detect BRAF alterations in samples from a significant fraction of patients with advanced melanoma with prior negative BRAF results. This study highlights the need for oncologists and pathologists to be critically aware of coverage and sensitivity limitations of various assays, particularly regarding non-V600E alterations, of which many are potentially targetable.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Humanos , Masculino , Melanoma/patología , Neoplasias Cutáneas/patología
10.
Oncologist ; 24(12): 1526-1533, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31292271

RESUMEN

BACKGROUND: CDK12 loss-of-function (LOF) genomic alterations are associated with focal tandem duplications (FTDs) in ovarian and prostate cancers. Because these FTDs may produce fusion-induced neoantigens (FINAs), CDK12 alteration is a candidate biomarker for immune checkpoint inhibitor sensitivity. Here we determine the prevalence of CDK12-LOF alterations and their association with FTDs across diverse tumor types. MATERIALS AND METHODS: A total of 142,133 tumor samples comprising 379 cancer types were sequenced (August 2014 to April 2018) by hybrid capture-based comprehensive genomic profiling (Foundation Medicine, Cambridge, MA) as part of routine clinical care. Results were analyzed for base substitutions, short insertions/deletions, rearrangements, and copy number alterations. CDK12-LOF genomic alterations were assessed for zygosity status and association with FTDs/focal copy number gain. RESULTS: CDK12 genomic alterations were detected in 1.1% of all cases, most frequently in prostate cancer (5.6%), but were also observed at >1% frequency in 11 cancer types. Across multiple cancer types, including prostate, gastric/esophageal, ovarian, breast, and endometrial cancer, the number of FTDs was significantly increased in CDK12-LOF versus CDK12 wild-type cases. Notably, CDK12-LOF was not consistently associated with a homologous recombination deficiency genomic signature. Quantitative assessment of CDK12-associated FTDs by measurement of single copy number gains identified novel likely deleterious CDK12 kinase-domain mutations in prostate and ovarian cancers. CONCLUSION: Detection of CDK12-LOF genomic alterations and their association with FTDs in a diverse spectrum of malignancies suggests that immunotherapy approaches targeting FINAs derived from CDK12-associated FTDs may be a broadly applicable strategy that could be explored across cancer types in a tumor-agnostic manner. IMPLICATIONS FOR PRACTICE: CDK12 inactivation in ovarian and prostate cancer results in the generation of focal tandem duplications, which can cause fusion-induced neoantigens. In prostate cancer, CDK12 alterations have demonstrated promise as a potential predictive biomarker for response to immune checkpoint blockade. This study evaluated genomic profiling data from >142,000 tumors to determine the prevalence of CDK12 loss-of-function genomic alterations across tumor types and demonstrated that CDK12 alterations are associated with the tandem-duplicator phenotype in cancer types other than ovarian and prostate cancer. The association of CDK12 alterations with focal tandem duplications across broad cancer types suggests that CDK12 inactivation warrants further investigation as a pan-cancer biomarker for immunotherapy benefit.


Asunto(s)
Quinasas Ciclina-Dependientes/genética , Mutación con Pérdida de Función , Neoplasias/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Fenotipo
11.
Oncologist ; 24(2): 219-228, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30108156

RESUMEN

BACKGROUND: The genomic landscape of Hodgkin lymphoma (HL) has been difficult to characterize due to the paucity of neoplastic cells and an abundant microenvironment. Such characterization is needed in order to improve treatment strategies. MATERIALS AND METHODS: We performed comprehensive genomic profiling (CGP) using targeted next-generation sequencing on archival formalin-fixed paraffin embedded tumor samples from 63 patients to analyze the landscape of HL. RESULTS: CGP was successful for 49/63 archival specimens (78%), and revealed aberrations impacting genes including B2M, TP53, and XPO1 (E571). Of the 34 patients for whom total mutation burden (TMB; mutations/megabase [Mb]) was assessed, 5 (15%) had high TMB (≥20 mutations/Mb), 18 (53%) had intermediate TMB (6-19 mutations/Mb), and 11 (32%) had low TMB (≤5 mutations/Mb). We next tested 13 patients' plasma cell-free DNA with droplet digital polymerase chain reaction for the presence of XPO1 E571 mutation, which was confirmed in the plasma of 31% of patients. In three patients with serially collected plasma samples, XPO1 E571K allelic frequency changes corresponded with changes in tumor size on conventional radiographic imaging. CONCLUSION: The study demonstrates that comprehensive genomic profiling of archival Hodgkin lymphoma tumor samples is feasible and leads to the identification of genes that are recurrently mutated and that Hodgkin lymphoma has increased mutation burden in the majority of samples analyzed. Furthermore, tracking of XPO1 E571 mutant allele frequency in a subset of patients may also represent a potential disease-monitoring strategy and warrants further investigation. IMPLICATIONS FOR PRACTICE: This study provides the first evidence that comprehensive genomic profiling can be performed to map the genomic landscape of Hodgkin lymphoma and that a subpopulation of patients has mutations in TP53, B2M, XPO1, and other genes. It was found that 15% of patients have high mutation burden, which, in cancers such as melanoma, may indicate sensitivity to immune checkpoint inhibitors, and may thus be explored for Hodgkin lymphoma. Lastly, this work demonstrates that changes in the mutant allele frequency of XPO1 in serially collected plasma cell-free DNA samples correspond with treatment outcomes measured with conventional radiographic imaging.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genómica/métodos , Enfermedad de Hodgkin/genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Adulto Joven
12.
Oncologist ; 24(10): 1305-1308, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31391294

RESUMEN

Identification of effective targeted therapies for recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) remains an unmet medical need. A patient with platinum-refractory recurrent oral cavity HNSCC underwent comprehensive genomic profiling (CGP) that identified an activating MET mutation (R1004). The patient was treated with the oral MET tyrosine kinase inhibitor crizotinib with rapid response to treatment.Based on this index case, we determined the frequency of MET alterations in 1,637 HNSCC samples, which had been analyzed with hybrid capture-based CGP performed in the routine course of clinical care. The specimens were sequenced to a median depth of >500× for all coding exons from 182 (version 1, n = 24), 236 (version 2, n = 326), or 315 (version 3, n = 1,287) cancer-related genes, plus select introns from 14 (version 1), 19 (version 2), or 28 (version 3) genes frequently rearranged in cancer. We identified 13 HNSCC cases (0.79%) with MET alterations (4 point mutation events and 9 focal amplification events). MET-mutant or amplified tumors represent a small but potentially actionable molecular subset of HNSCC. KEY POINTS: This case report is believed to be the first reported pan-cancer case of a patient harboring a MET mutation at R1004 demonstrating a clinical response to crizotinib, in addition to the first documented case of head and neck squamous cell carcinoma (HNSCC) with any MET alteration responding to crizotinib.The positive response to MET inhibition in this patient highlights the significance of comprehensive genomic profiling in advanced metastatic HNSCC to identify actionable targetable molecular alterations as current treatment options are limited.


Asunto(s)
Crizotinib/uso terapéutico , Genómica/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Crizotinib/farmacología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
13.
Oncologist ; 24(10): 1340-1347, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31040255

RESUMEN

BACKGROUND: Alterations in the DNA damage response (DDR) pathway confer sensitivity to certain chemotherapies, radiation, and other DNA damage repair targeted therapies. BRCA1/2 are the most well-studied DDR genes, but recurrent alterations are described in other DDR pathway members across cancers. Deleterious DDR alterations may sensitize tumor cells to poly (ADP-ribose) polymerase inhibition, but there are also increasing data suggesting that there may also be synergy with immune checkpoint inhibitors. The relevance of DDR defects in gastrointestinal (GI) cancers is understudied. We sought to characterize DDR-defective GI malignancies and to explore genomic context and tumor mutational burden (TMB) to provide a platform for future rational investigations. MATERIALS AND METHODS: Tumor samples from 17,486 unique patients with advanced colorectal, gastroesophageal, or small bowel carcinomas were assayed using hybrid-capture-based comprehensive genomic profiling including sequencing of 10 predefined DDR genes: ARID1A, ATM, ATR, BRCA1, BRCA2, CDK12, CHEK1, CHEK2, PALB2, and RAD51. TMB (mutations per megabase [mut/Mb]) was calculated from up to 1.14 Mb of sequenced DNA. Clinicopathologic features were extracted and descriptive statistics were used to explore genomic relationships among identified subgroups. RESULTS: DDR alterations were found in 17% of cases: gastric adenocarcinoma 475/1,750 (27%), small bowel adenocarcinoma 148/666 (22%), esophageal adenocarcinoma 467/2,501 (19%), and colorectal cancer 1,824/12,569 (15%). ARID1A (9.2%) and ATM (4.7%) were the most commonly altered DDR genes in this series, followed by BRCA2 (2.3%), BRCA1 (1.1%), CHEK2 (1.0%), ATR (0.8%), CDK12 (0.7%), PALB2 (0.6%), CHEK1 (0.1%) and RAD51 (0.1%). More than one DDR gene alteration was found in 24% of cases. High microsatellite instability (MSI-H) and high TMB (TMB-H, ≥20 mut/Mb) were found in 19% and 21% of DDR-altered cases, respectively. Of DDR-altered/TMB-H cases, 87% were also MSI-H. However, even in the microsatellite stable (MSS)/DDR-wild-type (WT) versus MSS/DDR-altered, TMB-high was seen more frequently (0.4% vs. 3.3%, P < .00001.) Median TMB was 5.4 mut/Mb in the MSS/DDR-altered subset versus 3.8 mut/Mb in the MSS/DDR-WT subset (P ≤ .00001), and ATR alterations were enriched in the MSS/TMB-high cases. CONCLUSION: This is the largest study to examine selected DDR defects in tubular GI cancers and confirms that DDR defects are relatively common and that there is an association between the selected DDR defects and a high TMB in more than 20% of cases. Microsatellite stable DDR-defective tumors with elevated TMB warrant further exploration. IMPLICATIONS FOR PRACTICE: Deleterious DNA damage response (DDR) alterations may sensitize tumor cells to poly (ADP-ribose) polymerase inhibition, but also potentially to immune checkpoint inhibitors, owing to accumulation of mutations in DDR-defective tumors. The relevance of DDR defects in gastrointestinal (GI) cancers is understudied. This article characterizes DDR-defective GI malignancies and explores genomic context and tumor mutational burden to provide a platform for future rational investigations.


Asunto(s)
Biomarcadores de Tumor/genética , Daño del ADN/genética , Neoplasias Gastrointestinales/genética , Femenino , Neoplasias Gastrointestinales/terapia , Humanos , Masculino , Persona de Mediana Edad , Mutación
14.
Oncologist ; 24(6): 791-797, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30373905

RESUMEN

BACKGROUND: Parathyroid carcinoma (PC) is a rare endocrine malignancy that can cause life-threatening hypercalcemia. We queried whether comprehensive genomic profiling (CGP) of PC might identify genomic alterations (GAs), which would suggest benefit from rationally matched therapeutics. METHODS: We performed hybrid-capture-based CGP to identify GAs and tumor mutational burden (TMB) in tumors from patients with this malignancy. RESULTS: There were 85 total GAs in 16 cases (5.3 GAs per case), and the median TMB was 1.7 mutations per megabase (m/Mb), with three cases having >20 m/Mb (18.7%). The genes most frequently harboring GA were CDC73 (38%), TP53 (38%), and MEN1 (31%). All MEN1-mutated cases also had loss of heterozygosity at that locus, but in contrast all CDC73-mutated cases retained heterozygosity. GAs suggesting potential benefit from matched targeted therapy were identified in 11 patients (69%) and most frequently found in PTEN (25%), NF1 (12.5%), KDR (12.5%), PIK3CA (12.5%), and TSC2 (12.5%). A patient whose tumor harbored KDR T668 K and who was treated with cabozantinib experienced a > 50% drop in parathyroid hormone level and radiographic partial response of 5.4 months with duration limited by toxicity. CONCLUSION: CGP identified GAs in PC that suggest benefit from targeted therapy, as supported by an index case of response to a matched tyrosine kinase inhibitor. Moreover, the unexpectedly high frequency of high TMB (>20 m/Mb) suggests a subset of PC may benefit from immune checkpoint inhibitors. IMPLICATIONS FOR PRACTICE: Parathyroid carcinoma (PC) is a rare endocrine malignancy that can cause life-threatening hypercalcemia. However, its molecular characteristics remain unclear, with few systemic therapeutic options available for this tumor. Hybrid-capture-based comprehensive genomic profiling of 16 primary cancers demonstrated presence of potentially actionable genomic alterations, including PTEN, NF1, KDR, PIK3CA, and TSC2, and a subset of hypermutated cancers with more than 20 mutations per megabase, the latter of which could benefit from immune checkpoint inhibitor therapy. A case benefiting from rationally matched targeted therapy for activating KDR mutation is also presented. These findings should be further investigated for their therapeutic potential.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Neoplasias de las Paratiroides/tratamiento farmacológico , Medicina de Precisión/métodos , Adulto , Anciano , Antineoplásicos/farmacología , Biomarcadores de Tumor/antagonistas & inhibidores , Estudios de Cohortes , Femenino , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Tasa de Mutación , Neoplasias de las Paratiroides/genética , Selección de Paciente
15.
Oncologist ; 24(11): 1462-1468, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31249137

RESUMEN

BACKGROUND: With the exception of trastuzumab, therapies directed at receptor tyrosine kinases (RTKs) in gastroesophageal adenocarcinomas (GEA) have had limited success. Recurrent fibroblast growth factor receptor 2 (FGFR2) alterations exist in GEA; however, little is known about the genomic landscape of FGFR2-altered GEA. We examined FGFR2 alteration frequency and frequency of co-occurring alterations in GEA. SUBJECTS, MATERIALS, AND METHODS: A total of 6,667 tissue specimens from patients with advanced GEA were assayed using hybrid capture-based genomic profiling. Tumor mutational burden (TMB) was determined on up to 1.1 Mb of sequenced DNA, and microsatellite instability was determined on 95 or 114 loci. Descriptive statistics were used to compare subgroups. RESULTS: We identified a total of 269 (4.0%) FGFR2-altered cases consisting of FGFR2-amplified (amp; 193, 72% of FGFR2-altered), FGFR2-mutated (36, 13%), FGFR2-rearranged (re; 23, 8.6%), and cases with multiple FGFR2 alterations (17, 6.3%). Co-occurring alterations in other GEA RTK targets including ERBB2 (10%), EGFR (8%), and MET (3%) were observed across all classes of FGFR2-altered GEA. Co-occurring alterations in MYC (17%), KRAS (10%), and PIK3CA (5.6%) were also observed frequently. Cases with FGFR2amp and FGFR2re were exclusively microsatellite stable. The median TMB for FGFR2-altered GEA was 3.6 mut/mb, not significantly different from a median of 4.3 mut/mb seen in FGFR2 wild-type samples. CONCLUSION: FGFR2-altered GEA is a heterogenous subgroup with approximately 20% of FGFR2-altered samples harboring concurrent RTK alterations. Putative co-occurring modifiers of FGFR2-directed therapy including oncogenic MYC, KRAS, and PIK3CA alterations were also frequent, suggesting that pretreatment molecular analyses may be needed to facilitate rational combination therapies and optimize patient selection for clinical trials. IMPLICATIONS FOR PRACTICE: Actionable receptor tyrosine kinase alterations assayed within a genomic context with therapeutic implications remain limited to HER2 amplification in gastroesophageal adenocarcinomas (GEA). Composite biomarkers and heterogeneity assessment are critical in optimizing patients selected for targeted therapies in GEA. Comprehensive genomic profiling in FGFR2-altered GEA parallels the heterogeneity findings in HER2-amplified GEA and adds support to the utility of genomic profiling in advanced gastroesophageal adenocarcinomas.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Neoplasias Esofágicas/genética , Unión Esofagogástrica/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias Gástricas/genética , Adenocarcinoma/patología , Neoplasias Esofágicas/patología , Unión Esofagogástrica/patología , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Estudios Retrospectivos , Neoplasias Gástricas/patología
16.
J Neurooncol ; 142(1): 111-118, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30535594

RESUMEN

INTRODUCTION: Glioblastoma (GBM) is heterogeneous and underlying genomic profiles influence evolution, resistance, and therapeutic responses. While extensive knowledge regarding genomic profiling of primary GBM exists, there remains a lack of understanding of genomic differences in recurrent GBM. METHODS: We used the FoundationOne® comprehensive genomic profiling assay (CGP) to analyze ten matched primary and recurrent GBM. Genomic alterations (GA) were compared to the cancer database Catalogue of Somatic Mutations in Cancer (COSMIC). RESULTS: All matched tumor pairs demonstrated differences in GA between the primary and recurrence including one resected without any intervening therapy. This suggests that time and/or therapeutic intervention contribute to GA. Although mutations were common to both the primary and recurrence, the percent reads varied substantially suggesting clonal expansions and contractions. For example, EGFR mutations were significantly expanded in three patients, and CNAs were increased in two patients at recurrence. Four genes that were commonly altered in both primary and recurrent GBM were more prevalent in our cohort than reported in COSMIC: CDKN2A (86% vs. 53%) and CDKN2B (86% vs. 54%) deletions, EGFR activating mutation (52% vs. 10%) or amplification (81% vs. 45%), and TERT mutation (95% vs. 51%). Lastly, PI3K pathway activating mutations were also commonly seen in our cohort (67%). CONCLUSIONS: CGP revealed that GA identified in GBM changed over time and with treatment. Mutations in TERT, CDKN2A/CDKN2B, EGFR, and PI3K pathway were commonly observed in both primary and recurrent GBM revealing their prognostic and therapeutic potential. This may have important implications for individualized therapies and needs further evaluation.


Asunto(s)
Neoplasias Encefálicas/genética , Genotipo , Glioblastoma/genética , Mutación , Recurrencia Local de Neoplasia/genética , Anciano , Neoplasias Encefálicas/patología , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Pronóstico
17.
PLoS Comput Biol ; 14(2): e1005965, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29415044

RESUMEN

A key constraint in genomic testing in oncology is that matched normal specimens are not commonly obtained in clinical practice. Thus, while well-characterized genomic alterations do not require normal tissue for interpretation, a significant number of alterations will be unknown in whether they are germline or somatic, in the absence of a matched normal control. We introduce SGZ (somatic-germline-zygosity), a computational method for predicting somatic vs. germline origin and homozygous vs. heterozygous or sub-clonal state of variants identified from deep massively parallel sequencing (MPS) of cancer specimens. The method does not require a patient matched normal control, enabling broad application in clinical research. SGZ predicts the somatic vs. germline status of each alteration identified by modeling the alteration's allele frequency (AF), taking into account the tumor content, tumor ploidy, and the local copy number. Accuracy of the prediction depends on the depth of sequencing and copy number model fit, which are achieved in our clinical assay by sequencing to high depth (>500x) using MPS, covering 394 cancer-related genes and over 3,500 genome-wide single nucleotide polymorphisms (SNPs). Calls are made using a statistic based on read depth and local variability of SNP AF. To validate the method, we first evaluated performance on samples from 30 lung and colon cancer patients, where we sequenced tumors and matched normal tissue. We examined predictions for 17 somatic hotspot mutations and 20 common germline SNPs in 20,182 clinical cancer specimens. To assess the impact of stromal admixture, we examined three cell lines, which were titrated with their matched normal to six levels (10-75%). Overall, predictions were made in 85% of cases, with 95-99% of variants predicted correctly, a significantly superior performance compared to a basic approach based on AF alone. We then applied the SGZ method to the COSMIC database of known somatic variants in cancer and found >50 that are in fact more likely to be germline.


Asunto(s)
Biología Computacional , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/genética , Algoritmos , Alelos , Neoplasias de la Mama/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias del Colon/genética , Simulación por Computador , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Exoma , Exones , Femenino , Frecuencia de los Genes , Genoma Humano , Genómica , Heterocigoto , Homocigoto , Humanos , Neoplasias Pulmonares/genética , Mutación , Ploidias , Polimorfismo de Nucleótido Simple , Probabilidad , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos
18.
PLoS Genet ; 12(12): e1006501, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27997549

RESUMEN

Neuroblastoma is characterized by a relative paucity of recurrent somatic mutations at diagnosis. However, recent studies have shown that the mutational burden increases at relapse, likely as a result of clonal evolution of mutation-carrying cells during primary treatment. To inform the development of personalized therapies, we sought to further define the frequency of potentially actionable mutations in neuroblastoma, both at diagnosis and after chemotherapy. We performed a retrospective study to determine mutation frequency, the only inclusion criterion being availability of cancer gene panel sequencing data from Foundation Medicine. We analyzed 151 neuroblastoma tumor samples: 44 obtained at diagnosis, 42 at second look surgery or biopsy for stable disease after chemotherapy, and 59 at relapse (6 were obtained at unknown time points). Nine patients had multiple tumor biopsies. ALK was the most commonly mutated gene in this cohort, and we observed a higher frequency of suspected oncogenic ALK mutations in relapsed disease than at diagnosis. Patients with relapsed disease had, on average, a greater number of mutations reported to be recurrent in cancer, and a greater number of mutations in genes that are potentially targetable with available therapeutics. We also observed an enrichment of reported recurrent RAS/MAPK pathway mutations in tumors obtained after chemotherapy. Our data support recent evidence suggesting that neuroblastomas undergo substantial mutational evolution during therapy, and that relapsed disease is more likely to be driven by a targetable oncogenic pathway, highlighting that it is critical to base treatment decisions on the molecular profile of the tumor at the time of treatment. However, it will be necessary to conduct prospective clinical trials that match sequencing results to targeted therapeutic intervention to determine if cancer genomic profiling improves patient outcomes.


Asunto(s)
Evolución Clonal/genética , Mutación/genética , Recurrencia Local de Neoplasia/genética , Neuroblastoma/genética , Proteínas Tirosina Quinasas Receptoras/genética , Adolescente , Adulto , Anciano , Quinasa de Linfoma Anaplásico , Niño , Preescolar , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Sistema de Señalización de MAP Quinasas/genética , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Neuroblastoma/cirugía , Estudios Retrospectivos , Proteínas ras/genética
19.
JAMA ; 321(14): 1391-1399, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30964529

RESUMEN

Importance: Data sets linking comprehensive genomic profiling (CGP) to clinical outcomes may accelerate precision medicine. Objective: To assess whether a database that combines EHR-derived clinical data with CGP can identify and extend associations in non-small cell lung cancer (NSCLC). Design, Setting, and Participants: Clinical data from EHRs were linked with CGP results for 28 998 patients from 275 US oncology practices. Among 4064 patients with NSCLC, exploratory associations between tumor genomics and patient characteristics with clinical outcomes were conducted, with data obtained between January 1, 2011, and January 1, 2018. Exposures: Tumor CGP, including presence of a driver alteration (a pathogenic or likely pathogenic alteration in a gene shown to drive tumor growth); tumor mutation burden (TMB), defined as the number of mutations per megabase; and clinical characteristics gathered from EHRs. Main Outcomes and Measures: Overall survival (OS), time receiving therapy, maximal therapy response (as documented by the treating physician in the EHR), and clinical benefit rate (fraction of patients with stable disease, partial response, or complete response) to therapy. Results: Among 4064 patients with NSCLC (median age, 66.0 years; 51.9% female), 3183 (78.3%) had a history of smoking, 3153 (77.6%) had nonsquamous cancer, and 871 (21.4%) had an alteration in EGFR, ALK, or ROS1 (701 [17.2%] with EGFR, 128 [3.1%] with ALK, and 42 [1.0%] with ROS1 alterations). There were 1946 deaths in 7 years. For patients with a driver alteration, improved OS was observed among those treated with (n = 575) vs not treated with (n = 560) targeted therapies (median, 18.6 months [95% CI, 15.2-21.7] vs 11.4 months [95% CI, 9.7-12.5] from advanced diagnosis; P < .001). TMB (in mutations/Mb) was significantly higher among smokers vs nonsmokers (8.7 [IQR, 4.4-14.8] vs 2.6 [IQR, 1.7-5.2]; P < .001) and significantly lower among patients with vs without an alteration in EGFR (3.5 [IQR, 1.76-6.1] vs 7.8 [IQR, 3.5-13.9]; P < .001), ALK (2.1 [IQR, 0.9-4.0] vs 7.0 [IQR, 3.5-13.0]; P < .001), RET (4.6 [IQR, 1.7-8.7] vs 7.0 [IQR, 2.6-13.0]; P = .004), or ROS1 (4.0 [IQR, 1.2-9.6] vs 7.0 [IQR, 2.6-13.0]; P = .03). In patients treated with anti-PD-1/PD-L1 therapies (n = 1290, 31.7%), TMB of 20 or more was significantly associated with improved OS from therapy initiation (16.8 months [95% CI, 11.6-24.9] vs 8.5 months [95% CI, 7.6-9.7]; P < .001), longer time receiving therapy (7.8 months [95% CI, 5.5-11.1] vs 3.3 months [95% CI, 2.8-3.7]; P < .001), and increased clinical benefit rate (80.7% vs 56.7%; P < .001) vs TMB less than 20. Conclusions and Relevance: Among patients with NSCLC included in a longitudinal database of clinical data linked to CGP results from routine care, exploratory analyses replicated previously described associations between clinical and genomic characteristics, between driver mutations and response to targeted therapy, and between TMB and response to immunotherapy. These findings demonstrate the feasibility of creating a clinicogenomic database derived from routine clinical experience and provide support for further research and discovery evaluating this approach in oncology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Bases de Datos Genéticas , Registros Electrónicos de Salud , Inmunoterapia , Neoplasias Pulmonares/genética , Mutación , Anciano , Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/terapia , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Genómica , Genotipo , Humanos , Masculino , Registro Médico Coordinado , Persona de Mediana Edad , Medicina de Precisión , Receptor de Muerte Celular Programada 1/análisis
20.
Cancer ; 124(7): 1358-1373, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29338072

RESUMEN

BACKGROUND: In contrast to lung cancer, few precision treatments are available for colorectal cancer (CRC). One rapidly emerging treatment target in CRC is ERBB2 (human epidermal growth factor receptor 2 [HER2]). Oncogenic alterations in HER2, or its dimerization partner HER3, can underlie sensitivity to HER2-targeted therapies. METHODS: In this study, 8887 CRC cases were evaluated by comprehensive genomic profiling for genomic alterations in 315 cancer-related genes, tumor mutational burden, and microsatellite instability. This cohort included both colonic (7599 cases; 85.5%) and rectal (1288 cases; 14.5%) adenocarcinomas. RESULTS: A total of 569 mCRCs were positive for ERBB2 (429 cases; 4.8%) and/or ERBB3 (148 cases; 1.7%) and featured ERBB amplification, short variant alterations, or a combination of the 2. High tumor mutational burden (≥20 mutations/Mb) was significantly more common in ERBB-mutated samples, and ERBB3-mutated CRCs were significantly more likely to have high microsatellite instability (P<.002). Alterations affecting KRAS (27.3%) were significantly underrepresented in ERBB2-amplified samples compared with wild-type CRC samples (51.8%), and ERBB2- or ERBB3-mutated samples (49.0% and 60.8%, respectively) (P<.01). Other significant differences in mutation frequency were observed for genes in the PI3K/MTOR and mismatch repair pathways. CONCLUSIONS: Although observed less often than in breast or upper gastrointestinal carcinomas, indications for which anti-HER2 therapies are approved, the percentage of CRC with ERBB genomic alterations is significant. Importantly, 32% of ERBB2-positive CRCs harbor short variant alterations that are undetectable by routine immunohistochemistry or fluorescence in situ hybridization testing. The success of anti-HER2 therapies in ongoing clinical trials is a promising development for patients with CRC. Cancer 2018;124:1358-73. © 2018 Foundation Medicine, Inc. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/genética , Amplificación de Genes , Terapia Molecular Dirigida , Mutación , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Niño , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Genómica , Humanos , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Pronóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda