Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(3): e2305546, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37702148

RESUMEN

Halide ion exchange seen in metal halide perovskites provide a substantial opportunity to control their halide composition and corresponding optoelectronic properties. Halide ion mixing across colloidal 3D perovskite nanocrystals have been extensively studied while the mixing within colloidal 2D counterparts remain underexplored. In this study, the halide ion exchange kinetics across colloidally stable 2D Ruddlesden-Popper layered bromide (Br) and iodide (I) perovskites using two different spacer ligands such as aromatic phenethylammonium (PEA) versus linear butyammonium (BA) is demonstrated. The halide exchange kinetic rate constant (k), as determined by tracking time-dependent absorbance changes, indicates that Br/I halide mixing in 2D PEA-based perovskites (2.7 × 10-3 min-1 ) occurs at an order of magnitude slower than in 2D BA-based perovskites (3.3 × 10-2 min-1 ). Concentration (≈1 mM to 100 mM) and temperature-dependent (50 to 80 °C) kinetic studies further allow for the determination of activation barrier for halide ion mixing across the 2D layered perovskites with 75.2 ± 4.4 kJ mol-1 (2D PEA) and 57.8 ± 7.8 kJ mol-1 (2D BA), respectively. The activation energy reveals that the type of spacer cations plays a crucial role in controlling the halide ion mobility and halide stability due mainly to the internal ligand chemical interaction within 2D structures.

2.
Chemphyschem ; 24(14): e202300202, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37153988

RESUMEN

Lead halide perovskites nanocrystals have emerged as a leading candidate in perovskite solar cells and light-emitting diodes. Given their favorable, tunable optoelectronic properties through modifying the size of nanocrystals, it is imperative to understand and control the growth of lead halide perovskite nanocrystals. However, during the nanocrystal growth into bulk films, the effect of halide bonding on growth kinetics remains elusive. To understand how a chemical bonding of Pb-X (covalency and ionicity) impact on growth of nanocrystals, we have examined two different halide perovskite nanocrystals of CsPbCl3 (more ionic) and CsPbI3 (more covalent) derived from the same parent CsPbBr3 nanocrystals. Tracking the growth of nanocrystals by monitoring the spectral features of bulk peaks (at 445 nm for Cl and at 650 nm for I) enables us to determine the growth activation energy to be 92 kJ/mol (for CsPbCl3 ) versus 71 kJ/mol (for CsPbI3 ). The electronegativity of halides in Pb-X bonds governs the bond strength (150-240 kJ/mol), characteristics of bonding (ionic versus covalent), and growth kinetics and resulting activation energies. A fundamental understanding of Pb-X bonding provides a significant insight into controlling the size of the perovskite nanocrystals with more desired optoelectronic properties.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda