RESUMEN
Environmental circumstances shaping soil microbial communities have been studied extensively. However, due to disparate study designs, it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 of those containing regional plant productivity gradients) to examine (i) if similar abiotic or biotic factors predict both large-scale (across sites) and regional-scale (within sites) patterns in bacterial and fungal community composition, and (ii) if microbial community composition differs consistently at two levels of regional plant productivity (low vs. high). Our results revealed that bacteria were associated with particular soil properties (such as base saturation) and both bacteria and fungi were associated with plant community composition across sites and within the majority of sites. Moreover, a discernible microbial community signal emerged, clearly distinguishing high and low-productivity soils across different grasslands independent of their location in the world. Hence, regional productivity differences may be typified by characteristic soil microbial communities across the grassland biome. These results could encourage future research aiming to predict the general effects of global changes on soil microbial community composition in grasslands and to discriminate fertile from infertile systems using generally applicable microbial indicators.
Asunto(s)
Pradera , Microbiota , Microbiología del Suelo , Microbiota/genética , Hongos/genética , Bacterias/genética , Plantas/microbiología , SueloRESUMEN
Mowing is a widely used practice for haymaking in the semi-arid grassland of northern China. Yet, how it impacts above- and belowground biota and ultimately affects the grassland ecosystem is unclear. Here we address this question by investigating the effects of three mowing regimes (no mowing, mowing once per year, mowing twice every three years) on vegetation characteristics, soil properties, and microbial communities in semi-arid grassland of Inner Mongolia. Our results show that two types of mowing treatments preserve high plant productivity by increasing subordinate species. However, mowing once per year led to grassland degradation when applied over a seven-year period. Mowing twice every three years facilitates soil bacterial communities and microbial interactions by generating a nutrient-rich ecological niche, whereas mowing once per year negatively impacted them via lessen the substrate quality. Given its clear positive effects upon above- and belowground biota, mowing twice every three years is the most suitable, convenient management practice for sustaining plant species richness on this type of grassland, a finding which suggests that sustainable utilization of grassland resources can only be achieved by using modest rotation cutting practices.
Asunto(s)
Ecosistema , Pradera , Biota , China , Poaceae , Suelo , Microbiología del SueloRESUMEN
Mowing is a common practice in grassland management. It removes the majority of current year's aboveground plant biomass and thus substantial amounts of nutrients residing in plant tissues. The responses of plant aboveground biomass and nutrients to mowing stubble height is of great importance for developing sustainable mowing regimes, however, they are not well understood. We studied the effects of 4-year annual mowing at different height on plant aboveground biomass, plant N, P and N:P ratio, and soil nutrients in an Inner Mongolian steppe. Six stubble heights were set respectively at 14â¯cm (M14), 12â¯cm (M12), 10â¯cm (M10), 8â¯cm (M8), 6â¯cm (M6) and less than 0.3â¯cm (M0) height to ground surface. A no-mowing treatment (CK) was also included, making seven treatments. The results show that plant biomass production increased under light mowing (stubble height â¯>â¯12â¯cm) but decreased under heavy mowing (stubble height â¯<â¯6â¯cm), and the optimal stubble height for sustainable mowing was 6-12â¯cm. Plant N and P concentrations increased with mowing intensity (i.e. with the decrease of mowing stubble height). Plant N:P ratio decreased for some species, but no a directional change was detected in plant N:P ratio at the community level, nor in soil organic carbon and nutrient concentrations across the stubble height treatments. Our results indicate that plant biomass and N & P respond quickly to mowing height, whereas the response of soil chemical properties is insignificant over the 4-year period. To elucidate variation of species compensatory growth along mowing intensity gradient and the mutual feedback mechanism of soil-plant in mowing grassland, long-term study at permanent sites with changing stubble heights should be strengthened.
Asunto(s)
Carbono , Suelo , Biomasa , Pradera , Nitrógeno , Nutrientes , PoaceaeRESUMEN
While mowing-induced changes in plant traits and their effects on ecosystem functioning in semi-arid grassland are well studied, the relations between plant size and nutrient strategies are largely unknown. Mowing may drive the shifts of plant nutrient limitation and allocation. Here, we evaluated the changes in nutrient stoichiometry and allocation with variations in sizes of Leymus chinensis, the dominant plant species in Inner Mongolia grassland, to various mowing frequencies in a 17-yr controlled experiment. Affected by mowing, the concentrations of nitrogen (N), phosphorus (P), and carbon (C) in leaves and stems were significantly increased, negatively correlating with plant sizes. Moreover, we found significant trade-offs between the concentrations and accumulation of N, P, and C in plant tissues. The N:P ratios of L. chinensis aboveground biomass, linearly correlating with plant size, significantly decreased with increased mowing frequencies. The ratios of C:N and C:P of L. chinensis individuals were positively correlated with plant size, showing an exponential pattern. With increased mowing frequencies, L. chinensis size was correlated with the allocation ratios of leaves to stems of N, P, and C by the tendencies of negative parabola, positive, and negative linear. The results of structure equation modeling showed that the N, P, and C allocations were co-regulated by biomass allocation and nutrient concentration ratios of leaves to stems. In summary, we found a significant decoupling effect between plant traits and nutrient strategies along mowing frequencies. Our results reveal a mechanism for how long-term mowing-induced changes in concentrations, accumulations, ecological stoichiometry, and allocations of key elements are mediated by the variations in plant sizes of perennial rhizome grass.