Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2200019119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914130

RESUMEN

The nanoscale structure and dynamics of proteins on surfaces has been extensively studied using various imaging techniques, such as transmission electron microscopy and atomic force microscopy (AFM) in liquid environments. These powerful imaging techniques, however, can potentially damage or perturb delicate biological material and do not provide chemical information, which prevents a fundamental understanding of the dynamic processes underlying their evolution under physiological conditions. Here, we use a platform developed in our laboratory that enables acquisition of infrared (IR) spectroscopy and AFM images of biological material in physiological liquids with nanometer resolution in a cell closed by atomically thin graphene membranes transparent to IR photons. In this work, we studied the self-assembly process of S-layer proteins at the graphene-aqueous solution interface. The graphene acts also as the membrane separating the solution containing the proteins and Ca2+ ions from the AFM tip, thus eliminating sample damage and contamination effects. The formation of S-layer protein lattices and their structural evolution was monitored by AFM and by recording the amide I and II IR absorption bands, which reveal the noncovalent interaction between proteins and their response to the environment, including ionic strength and solvation. Our measurement platform opens unique opportunities to study biological material and soft materials in general.


Asunto(s)
Glicoproteínas de Membrana , Microscopía de Fuerza Atómica , Nanotecnología , Espectrofotometría Infrarroja , Amidas/química , Calcio , Grafito/química , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestructura , Concentración Osmolar , Fotones , Solventes/química , Agua/química
2.
J Am Chem Soc ; 144(20): 8927-8931, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35575474

RESUMEN

Understanding the chemical environment and interparticle dynamics of nanoparticle electrocatalysts under operating conditions offers valuable insights into tuning their activity and selectivity. This is particularly important to the design of Cu nanocatalysts for CO2 electroreduction due to their dynamic nature under bias. Here, we have developed operando electrochemical resonant soft X-ray scattering (EC-RSoXS) to probe the chemical identity of active sites during the dynamic structural transformation of Cu nanoparticle (NP) ensembles through 1 µm thick electrolyte. Operando scattering-enhanced X-ray absorption spectroscopy (XAS) serves as a powerful technique to investigate the size-dependent catalyst stability under beam exposure while monitoring the potential-dependent surface structural changes. Small NPs (7 nm) in aqueous electrolyte were found to experience a predominant soft X-ray beam-induced oxidation to CuO despite only sub-second X-ray exposure. In comparison, large NPs (18 nm) showed improved resistivity to beam damage, which allowed the reliable observation of surface Cu2O electroreduction to metallic Cu. Small-angle X-ray scattering (SAXS) statistically probes the particle-particle interactions of large ensembles of NPs. This study points out the need for rigorous examination of beam effects for operando X-ray studies on electrocatalysts. The strategy of using EC-RSoXS that combines soft XAS and SAXS can serve as a general approach to simultaneously investigate the chemical environment and interparticle information on nanocatalysts.


Asunto(s)
Dióxido de Carbono , Catálisis , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rayos X
3.
BMC Microbiol ; 22(1): 129, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35549675

RESUMEN

BACKGROUND: The potential pathogenic role of Stenotrophomonas maltophilia in lung disease and in particular in cystic fibrosis is unclear. To develop further understanding of the biology of this taxa, the taxonomic position, antibiotic resistance and virulence factors of S. maltophilia isolates from patients with chronic lung disease were studied. RESULTS: A total of 111 isolates recovered between 2003 and 2016 from respiratory samples from patients in five different countries were included. Based on a cut-off of 95%, analysis of average nucleotide identity by BLAST (ANIb) showed that the 111 isolates identified as S. maltophilia by Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) belonged to S. maltophilia (n = 65), S. pavanii (n = 6) and 13 putative novel species (n = 40), which each included 1-5 isolates; these groupings coincided with the results of the 16S rDNA analysis, and the L1 and L2 ß-lactamase Neighbor-Joining phylogeny. Chromosomally encoded aminoglycoside resistance was identified in all S. maltophilia and S. pavani isolates, while acquired antibiotic resistance genes were present in only a few isolates. Nevertheless, phenotypic resistance levels against commonly used antibiotics, determined by standard broth microbroth dilution, were high. Although putative virulence genes were present in all isolates, the percentage of positive isolates varied. The Xps II secretion system responsible for the secretion of the StmPr1-3 proteases was mainly limited to isolates identified as S. maltophilia based on ANIb, but no correlation with phenotypic expression of protease activity was found. The RPF two-component quorum sensing system involved in virulence and antibiotic resistance expression has two main variants with one variant lacking 190 amino acids in the sensing region. CONCLUSIONS: The putative novel Stenotrophomonas species recovered from patient samples and identified by MALDI-TOF/MS as S. maltophilia, differed from S. maltophilia in resistance and virulence genes, and therefore possibly in pathogenicity. Revision of the Stenotrophomonas taxonomy is needed in order to reliably identify strains within the genus and elucidate the role of the different species in disease.


Asunto(s)
Fibrosis Quística , Infecciones por Bacterias Gramnegativas , Infecciones del Sistema Respiratorio , Stenotrophomonas maltophilia , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Humanos , Stenotrophomonas , Factores de Virulencia/genética
4.
Antonie Van Leeuwenhoek ; 114(10): 1721-1733, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34463860

RESUMEN

To improve understanding of the role of Ralstonia in cystic fibrosis (CF), whole genomes of 18 strains from clinical samples were sequenced using Illumina technology. Sequences were analysed by core genome Multi-Locus Sequence Typing, Average Nucleotide Identity based on BLAST (ANIb), RAST annotation, and by ResFinder. Phylogenetic analysis was performed for the 16S rRNA gene, and the OXA-22 and OXA-60 ß-lactamase families. The minimal inhibitory concentrations (MICs) were determined using broth microdilution. ANIb data for the 18 isolates and 54 strains from GenBank, supported by phylogenetic analysis, showed that 8 groups of clusters (A-H), as well as subgroups that should be considered as species or subspecies. Groups A-C contain strains previously identified as Ralstonia solanacearum and Ralstonia pseudosolanacearum. We propose that group A is a novel species. Group B and C are Ralstonia syzygii, Ralstonia solanacearum, respectively. Group D is composed of Ralstonia mannitolilytica and Group E of Ralstonia pickettii. Group F and G should be considered novel species. Group H strains belong to R. insidiosa. OXA-22 and OXA-60 family ß-lactamases were encoded by all strains. Co-trimoxazole generally showed high activity with low MICs (≤1 mg/l) as did ciprofloxacin (≤0.12 mg/l). MICs against the other antibiotics were more variable, but generally high. RAST annotation revealed limited differences between the strains, and virulence factors were not identified. The taxonomy of the genus Ralstonia is in need of revision, but sequencing additional isolates is needed. Antibiotic resistance levels are high. Annotation did not identify potential virulence factors.


Asunto(s)
Ralstonia , Humanos , Tipificación de Secuencias Multilocus , Filogenia , ARN Ribosómico 16S/genética , Ralstonia/genética
5.
J Chem Phys ; 155(5): 051101, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34364344

RESUMEN

Undercoordinated metal nanoclusters have shown great promise for various catalytic applications. However, their activity is often limited by the covalently bonded ligands, which could block the active surface sites. Here, we investigate the ligand removal process for Au25 nanoclusters using both thermal and electrochemical treatments, as well as its impact on the electroreduction of CO2 to CO. The Au25 nanoclusters are synthesized with 2-phenylethanethiol as the capping agent and anchored on sulfur-doped graphene. The thiolate ligands can be readily removed under either thermal annealing at ≥180°C or electrochemical biasing at ≤-0.5 V vs reversible hydrogen electrode, as evidenced by the Cu underpotential deposition surface area measurement, x-ray photoelectron spectroscopy, and extended x-ray absorption fine structure spectroscopy. However, these ligand-removing treatments also trigger the structural evolution of Au25 nanoclusters concomitantly. The thermally and electrochemically treated Au25 nanoclusters show enhanced activity and selectivity for the electrochemical CO2-to-CO conversion than their pristine counterpart, which is attributed to the exposure of undercoordinated Au sites on the surface after ligand removal. This work provides facile strategies to strip away the staple ligands from metal nanoclusters and highlights its importance in promoting the catalytic performances.

6.
Nano Lett ; 20(3): 1974-1979, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32048513

RESUMEN

Pt-based alloy catalysts are promising candidates for fuel-cell applications, especially for cathodic oxygen reduction reaction (ORR) and anodic methanol oxidation reaction (MOR). The rational design of composition and morphology is crucial to promoting catalytic performances. Here, we report the synthesis of Pt-Co nanoframes via chemical etching of Co from solid rhombic dodecahedra. The obtained Pt-Co nanoframes exhibit excellent ORR mass activity in acidic electrolyte, which is as high as 0.40 A mgPt-1 initially and 0.34 A mgPt-1 after 10 000 potential cycles at 0.95 VRHE. Furthermore, their MOR mass activity in alkaline media is up to 4.28 A mgPt-1 and is 4-fold higher than that of commercial Pt/C catalyst. Experimental studies indicate that the weakened binding of intermediate carbonaceous poison contributes to the enhanced MOR behavior. More impressively, the Pt-Co nanoframes also demonstrate remarkable stability under long-term testing, which could be attributed to the negligible electrochemical Co dissolution.

7.
Artículo en Inglés | MEDLINE | ID: mdl-31767727

RESUMEN

The objective was to determine the in vitro antimicrobial susceptibility of Pseudomonas aeruginosa isolates cultured from cystic fibrosis (CF) patients and explore associations between strain sequence type and susceptibility. Fourteen antibiotics and antibiotic combinations, including the novel antibacterial peptide murepavadin, were tested for activity against 414 Pseudomonas aeruginosa isolates cultured from respiratory samples of CF patients. The complete genomes of the isolates were sequenced, and minimum spanning trees were constructed based on the sequence types (STs). Percentages of resistance according to CLSI 2019 breakpoints were as follows: cefepime, 14%; ceftazidime, 11%; ceftazidime-avibactam, 7%; ceftolozane-tazobactam, 3%; piperacillin-tazobactam, 12%; meropenem, 18%; imipenem, 32%; aztreonam, 23%; ciprofloxacin, 30%; gentamicin, 30%; tobramycin, 12%; amikacin, 18%; and colistin, 4%. Murepavadin MIC50 and MIC90 were 0.12 mg/liter and 2 mg/liter, respectively. There were no apparent clonal clusters associated with resistance, but higher MICs did appear to occur more often in STs with multiple isolates than in single ST isolates. In general, the CF isolates showed a wide genetic distribution. P. aeruginosa CF isolates exhibited the lowest resistance rates against ceftolozane-tazobactam, ceftazidime-avibactam, and colistin. Murepavadin demonstrated the highest activity on a per-weight basis and may therefore become a valuable addition to the currently available antibiotics for treatment of respiratory infection in people with CF.


Asunto(s)
Antibacterianos/farmacología , Fibrosis Quística/microbiología , Péptidos Cíclicos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Infecciones por Pseudomonas , Pseudomonas aeruginosa/genética
8.
Clin Infect Dis ; 69(10): 1812-1816, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31056660

RESUMEN

Median cystic fibrosis (CF) survival has increased dramatically over time due to several factors, including greater availability and use of antimicrobial therapies. During the progression of CF lung disease, however, the emergence of multidrug antimicrobial resistance can limit treatment effectiveness, threatening patient longevity. Current planktonic-based antimicrobial susceptibility testing lacks the ability to predict clinical response to antimicrobial treatment of chronic CF lung infections. There are numerous reasons for these limitations including bacterial phenotypic and genotypic diversity, polymicrobial interactions, and impaired antibiotic efficacy within the CF lung environment. The parallels to other chronic diseases such as non-CF bronchiectasis are discussed as well as research priorities for moving forward.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Enfermedad Crónica/tratamiento farmacológico , Fibrosis Quística/microbiología , Humanos , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología , Esputo/microbiología
9.
J Am Chem Soc ; 140(47): 16237-16244, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30369234

RESUMEN

Knowledge of the molecular composition and electronic structure of electrified solid-liquid interfaces is key to understanding elemental processes in heterogeneous reactions. Using X-ray absorption spectroscopy in the interface-sensitive electron yield mode (EY-XAS), first-principles electronic structure calculations, and multiscale simulations, we determined the chemical composition of the interfacial region of a polycrystalline platinum electrode in contact with aqueous sulfuric acid solution at potentials between the hydrogen and oxygen evolution reactions. We found that between 0.7 and 1.3 V vs Ag/AgCl the electrical double layer (EDL) region comprises adsorbed sulfate ions with hydrated hydronium ions in the next layer. No evidence was found for bisulfate or Pt-O/Pt-OH species, which have very distinctive spectral signatures. In addition to resolving the long-standing issue of the EDL structure, our work establishes interface- and element-sensitive EY-XAS as a powerful spectroscopic tool for studying condensed phase, buried solid-liquid interfaces relevant to various electrochemical processes and devices.

10.
Artif Organs ; 42(10): 983-991, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29675919

RESUMEN

Infection of the driveline or pump pocket is a common complication in patients with ventricular assist devices (VADs) and Staphylococcus aureus is the main pathogen causing such infections. Limited evidence is currently available to guide the choice of antibiotic therapy and the duration of treatment in these patients. Patients at the University Medical Center Utrecht who developed a VAD-related S. aureus infection between 2007 and 2016 were retrospectively assessed. Blood culture isolates were typed by whole genome sequencing to differentiate between relapses and reinfections, and to determine whether antibiotic therapy had led to acquisition of resistance mutations. Twenty-eight patients had S. aureus VAD infections. Ten of these patients also suffered S. aureus bacteremia. Discontinuation of antibiotic therapy was followed by relapse in 50% of the patients without prior S. aureus bacteremia and in 80% of patients with bacteremia. Oral cephalexin could ultimately suppress the infection for the duration of follow-up in 8/8 patients without S. aureus bacteremia and in 3/6 patients with S. aureus bacteremia. Clindamycin failed as suppressive therapy in 4/4 patients. Cephalexin appears an adequate choice for antibiotic suppression of VAD infections with methicillin-susceptible S. aureus. In patients without systemic symptoms, it may be justified to attempt to stop therapy after treatment of the acute infection, but antibiotic suppression until heart transplant seems indicated in patients with S. aureus bacteremia.


Asunto(s)
Antibacterianos/uso terapéutico , Corazón Auxiliar/microbiología , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Adolescente , Adulto , Anciano , Bacteriemia/tratamiento farmacológico , Bacteriemia/etiología , Cefalexina/uso terapéutico , Clindamicina/uso terapéutico , Femenino , Corazón Auxiliar/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Infecciones Relacionadas con Prótesis/etiología , Infecciones Estafilocócicas/etiología , Staphylococcus aureus/genética , Adulto Joven
12.
Phys Chem Chem Phys ; 17(45): 30229-39, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26514115

RESUMEN

Electrode/electrolyte interfaces play a vital role in various electrochemical systems, but in situ characterization of such buried interfaces remains a major challenge. Several efforts to develop techniques or to modify existing techniques to study such interfaces are showing great promise to overcome this challenge. Successful examples include electrochemical scanning tunneling microscopy (EC-STM), surface-sensitive vibrational spectroscopies, environmental transmission electron microscopy (E-TEM), and surface X-ray scattering. Other techniques such as X-ray core-level spectroscopies are element-specific and chemical-state-specific, and are being widely applied in materials science research. Herein we showcase four types of newly developed strategies to probe electrode/electrolyte interfaces in situ with X-ray core-level spectroscopies. These include the standing wave approach, the meniscus approach, and two liquid cell approaches based on X-ray photoelectron spectroscopy and soft X-ray absorption spectroscopy. These examples demonstrate that with proper modifications, many ultra-high-vacuum based techniques can be adapted to study buried electrode/electrolyte interfaces and provide interface-sensitive, element- and chemical-state-specific information, such as solute distribution, hydrogen-bonding network, and molecular reorientation. At present, each method has its own specific limitations, but all of them enable in situ and operando characterization of electrode/electrolyte interfaces that can provide important insights into a variety of electrochemical systems.

14.
Sci Adv ; 10(38): eado4142, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39292781

RESUMEN

Despite the promise of silk-based devices, the inherent disorder of native silk limits performance. Here, we report highly ordered two-dimensional silk fibroin (SF) films grown epitaxially on van der Waals (vdW) substrates. Using atomic force microscopy, nano-Fourier transform infrared spectroscopy, and molecular dynamics, we show that the films consist of lamellae of SF molecules that exhibit the same secondary structure as the nanocrystallites of native silk. Increasing the SF concentration results in multilayers that grow either by direct assembly of SF molecules into the lamellae or, at high concentrations, along a two-step pathway beginning with a disordered monolayer that then crystallizes. Scanning Kelvin probe measurements show that these films substantially alter the surface potential; thus, they provide a platform for silk-based electronics on vdW solids.

15.
Pediatr Infect Dis J ; 43(1): 49-55, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37983368

RESUMEN

BACKGROUND: The aim was to determine whether salvage treatment with systemic antibiotics is a safe and effective strategy for Enterobacterales bloodstream infections (BSI) in pediatric oncology patients with a central venous catheter (CVC). METHODS: A retrospective study was performed on oncology and stem cell recipient patients with a CVC and blood culture with Enterobacterales , at the Princess Máxima Centre for Pediatric Oncology, Utrecht, the Netherlands. Analyses were performed for all BSI and for episodes meeting central line-associated bloodstream infection (CLABSI) criteria. The cumulative incidence of an event (ie, removal, intensive care admission or death) was estimated after blood culture collection for episodes primarily treated with antibiotics. The effect of prognostic factors on the hazard of the event of interest was assessed by estimating a Cox proportional hazard regression model. RESULTS: In total, 95 CVC-related Enterobacterales BSIs in 82 patients were included; 12 (13%) BSIs required immediate CVC removal and for 83 (87%) BSIs CVC salvage was attempted. The cumulative incidence of events at 60 days was 53.0% [95% confidence interval (CI): 41.7-63.1] for BSIs (n = 83), and 64.4% (95% CI: 48.3-76.7) for CLABSIs (n = 45). The events occurred after a median of 6 (Q1-Q3: 2-15) and 6 (Q1-Q3: 2-20) days for BSIs and CLABSIs, respectively. Intensive care admission after salvage treatment was required in 16% of the BSIs and CLABSIs, resulting in death in 5% and 2% of cases, respectively. No significant association between risk factors and events was found. CONCLUSIONS: The cumulative incidence of an event at 60 days after salvage treatment for Enterobacterales CLABSIs and BSIs in pediatric oncology patients is high. Immediate CVC removal appears recommendable for this patient group.


Asunto(s)
Infecciones Relacionadas con Catéteres , Cateterismo Venoso Central , Catéteres Venosos Centrales , Neoplasias , Sepsis , Niño , Humanos , Catéteres Venosos Centrales/efectos adversos , Estudios Retrospectivos , Cateterismo Venoso Central/efectos adversos , Sepsis/epidemiología , Neoplasias/complicaciones , Neoplasias/terapia , Antibacterianos/uso terapéutico , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Infecciones Relacionadas con Catéteres/epidemiología , Infecciones Relacionadas con Catéteres/complicaciones
16.
Sci Adv ; 10(38): eadq3801, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39292772

RESUMEN

Plastics redesign for circularity has primarily focused on monomer chemistries enabling faster deconstruction rates concomitant with high monomer yields. Yet, during deconstruction, polymer chains interact with their reaction medium, which remains underexplored in polymer reactivity. Here, we show that, when plastics are deconstructed in reaction media that promote swelling, initial rates are accelerated by over sixfold beyond those in small-molecule analogs. This unexpected acceleration is primarily tied to mechanochemical activation of strained polymer chains; however, changes in the activity of water under polymer confinement and bond activation in solvent-separated ion pairs are also important. Together, deconstruction times can be shortened by seven times by codesigning plastics and their deconstruction processes.

17.
Opt Express ; 21(7): 8166-76, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23571906

RESUMEN

Efficient conversion of photonic to plasmonic energy is important for nano-optical applications, particularly imaging and spectroscopy. Recently a new generation of photonic/plasmonic transducers, the 'campanile' probes, has been developed that overcomes many shortcomings of previous near-field probes by efficiently merging broadband field enhancement with bidirectional coupling of far- to near-field electromagnetic modes. In this work we compare the properties of the campanile structure with those of current NSOM tips using finite element simulations. Field confinement, enhancement, and polarization near the apex of the probe are evaluated relative to local fields created by conical tapered tips in vacuum and in tip-substrate gap mode. We show that the campanile design has similar field enhancement and bandwidth capabilities as those of ultra-sharp metallized tips, but without the substrate and sample restrictions inherent in the tip-surface gap mode operation often required by those tips. In addition, we show for the first time that this campanile probe structure also significantly enhances the radiative rate of any dipole emitter located near the probe apex, quantifying the enhanced decay rate and demonstrating that over 90% of the light radiated by the emitter is "captured" by this probe. This is equivalent to collecting the light from a solid angle of ~3.6 pi. These advantages are crucial for performing techniques such as Raman and IR spectroscopy, white-light nano-ellipsometry and ultrafast pump-probe studies at the nanoscale.


Asunto(s)
Diseño Asistido por Computadora , Resonancia por Plasmón de Superficie/instrumentación , Transductores , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Modelos Teóricos , Dispersión de Radiación
18.
Pathogens ; 12(8)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37624013

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen and the leading cause of infection in patients with cystic fibrosis (CF). The ability of P. aeruginosa to evade host responses and develop into chronic infection causes significant morbidity and mortality. Several mouse models have been developed to study chronic respiratory infections induced by P. aeruginosa, with the bead agar model being the most widely used. However, this model has several limitations, including the requirement for surgical procedures and high mortality rates. Herein, we describe novel and adapted biologically relevant models of chronic lung infection caused by P. aeruginosa. Three methods are described: a clinical isolate infection model, utilising isolates obtained from patients with CF; an incomplete antibiotic clearance model, leading to bacterial bounce-back; and the establishment of chronic infection; and an adapted water bottle chronic infection model. These models circumvent the requirement for a surgical procedure and, importantly, can be induced with clinical isolates of P. aeruginosa and in wild-type mice. We also demonstrate successful induction of chronic infection in the transgenic ßENaC murine model of CF. We envisage that the models described will facilitate the investigations of host and microbial factors, and the efficacy of novel antimicrobials, during chronic P. aeruginosa respiratory infections.

19.
Small ; 8(3): 468-73, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22213635

RESUMEN

Polyvinylpyrollidone (PVP)-capped platinum nanoparticles (NPs) are found to change shape from spherical to flat when deposited on mesoporous silica substrates (SBA-15). Transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and extended X-ray absorption fine structure (EXAFS) analyses are used in these studies. The SAXS results indicate that, after deposition, the 2 nm NPs have an average gyration radius 22% larger than in solution, while the EXAFS measurements indicate a decrease in first neighbor co-ordination number from 9.3 to 7.4. The deformation of these small capped NPs is attributed to interactions with the surface of the SBA-15 support, as evidenced by X-ray absorption near-edge structure (XANES).

20.
Nano Lett ; 11(3): 1201-7, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21261258

RESUMEN

We have demonstrated hyperspectral tip-enhanced Raman imaging on dielectric substrates using linearly polarized light and nanofabricated coaxial antenna tips. A full Raman spectrum was acquired at each pixel of a 256 by 256 pixel contact-mode atomic force microscope image of carbon nanotubes grown on a fused silica microscope coverslip, allowing D and G mode intensity and D-mode peak shifts to be measured with ∼20 nm spatial resolution. Tip enhancement was sufficient to acquire useful Raman spectra in 50-100 ms. Coaxial scan probes combine the efficiency and enhanced, ultralocalized optical fields of plasmonically coupled antennae with the superior topographical imaging properties of sharp metal tips. The yield of the coaxial tip fabrication process is close to 100%, and the tips are sufficiently durable to support hours of contact-mode force microscope imaging. Our coaxial probes avoid the limitations associated with the "gap-mode" imaging geometry used in most tip-enhanced Raman studies to date, where a sharp metal tip is held ∼1 nm above a metallic substrate with the sample located in the gap.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda