Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell Physiol Biochem ; 56(3): 293-309, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35781359

RESUMEN

BACKGROUND/AIMS: An obesogenic diet (high fat and sugar, low fiber) is associated with an increased risk for metabolic and cardiovascular disorders. Previous studies have demonstrated that epigenetic changes can modify gene transcription and protein function, playing a key role in the development of several diseases. The methyltransferase Set7 methylates histone and non-histone proteins, influencing diverse biological and pathological processes. However, the functional role of Set7 in obesity-associated metabolic and cardiovascular complications is unknown. METHODS: Wild type and Set7 knockout female mice were fed a normal diet or an obesogenic diet for 12 weeks. Body weight gain and glucose tolerance were measured. The 3T3-L1 cells were used to determine the role of Set7 in white adipogenic differentiation. Cardiac morphology and function were evaluated by histology and echocardiography. An ex vivo Langendorff perfusion system was used to model cardiac ischemia/reperfusion (I/R). RESULTS: Here, we report that Set7 protein levels were enhanced in the heart and perigonadal adipose tissue (PAT) of female mice fed an obesogenic diet. Significantly, loss of Set7 prevented obesogenic diet-induced glucose intolerance in female mice although it did not affect the obesogenic diet-induced increase in body weight gain and adiposity in these animals, nor did Set7 inhibition change white adipogenic differentiation in vitro. In addition, loss of Set7 prevented the compromised cardiac functional recovery following ischemia and reperfusion (I/R) injury in obesogenic diet-fed female mice; however, deletion of Set7 did not influence obesogenic diet-induced cardiac hypertrophy nor the hemodynamic and echocardiographic parameters. CONCLUSION: These data indicate that Set7 plays a key role in obesogenic diet-induced glucose intolerance and compromised myocardial functional recovery after I/R in obese female mice.


Asunto(s)
Intolerancia a la Glucosa , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Isquemia , Ratones , Ratones Noqueados , Ratones Obesos , Obesidad/metabolismo , Reperfusión/efectos adversos
2.
Clin Sci (Lond) ; 136(21): 1537-1554, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36285636

RESUMEN

Cardiovascular diseases are the main cause of death worldwide. Recent studies have revealed the influence of histone-modifying enzymes in cardiac remodeling and heart dysfunction. The Set7 methyltransferase regulates the expression of several genes through the methylation of histones and modulates the activity of non-histone proteins. However, the role of Set7 in cardiac remodeling and heart dysfunction remains unknown. To address this question, wild-type (WT) and Set7 knockout (KO) male mice were injected with isoproterenol or saline. WT mice injected with isoproterenol displayed a decrease in Set7 activity in the heart. In addition, WT and Set7 KO mice injected with isoproterenol exhibited cardiac hypertrophy. Interestingly, Set7 deletion exacerbated cardiac hypertrophy in response to isoproterenol but attenuated myocardial fibrosis. Echocardiograms revealed that WT mice injected with isoproterenol had lowered ejection fractions and fractional shortening, and increased E'-wave deceleration time and E/A ratio compared with their controls. Conversely, Set7 KO mice did not show alteration in these parameters in response to isoproterenol. However, prolonged exposure to isoproterenol induced cardiac dysfunction both in WT and Set7 KO mice. Both isoproterenol and Set7 deletion changed the transcriptional profile of the heart. Moreover, Set7 deletion increased the expression of Pgc1α and mitochondrial DNA content in the heart, and reduced the expression of cellular senescence and inflammation markers in response to isoproterenol. Taken together, our data suggest that Set7 deletion attenuates isoproterenol-induced myocardial fibrosis and delays heart dysfunction, suggesting that Set7 plays an important role in cardiac remodeling and dysfunction in response to stress.


Asunto(s)
Cardiomiopatías , Remodelación Ventricular , Ratones , Masculino , Animales , Isoproterenol/efectos adversos , Isoproterenol/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Ratones Noqueados , Cardiomiopatías/inducido químicamente , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/genética , Fibrosis , Miocitos Cardíacos/metabolismo , Ratones Endogámicos C57BL
3.
Exp Physiol ; 107(8): 892-905, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35765992

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the effect of an obesogenic diet on the expression of microRNAs (miRNAs) involved in cardiac hypertrophy in female mice? What is the main finding and its importance? Female mice fed an obesogenic diet exhibited cardiac hypertrophy associated with increased levels of miRNA-143-3p, decreased mRNA levels of Sox6 and increased mRNA levels of Myh7. Inhibition of miRNA-143-3p increased Sox6 mRNA levels and reduced Myh7 expression in cardiomyocytes, and prevented angiotensin II-induced cardiomyocyte hypertrophy. The results indicate that the miRNA-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy. ABSTRACT: Obesity induces cardiometabolic disorders associated with a high risk of mortality. We have previously shown that the microRNA (miRNA) expression profile is changed in obesity-induced cardiac hypertrophy in male mice. Here, we investigated the effect of an obesogenic diet on the expression of miRNAs involved in cardiac hypertrophy in female mice. Female mice fed an obesogenic diet displayed an increased body weight gain, glucose intolerance, insulin resistance and dyslipidaemia. In addition, obese female mice exhibited cardiac hypertrophy associated with increased levels of several miRNAs, including miR-143-3p. Bioinformatic analysis identified Sox6, regulator of Myh7 gene transcription, as a predicted target of miR-143-3p. Female mice fed an obesogenic diet exhibited decreased mRNA levels of Sox6 and increased expression of Myh7 in the heart. Loss-of-function studies in cardiomyocytes revealed that inhibition of miR-143-3p increased Sox6 mRNA levels and reduced Myh7 expression. Collectively, our results indicate that obesity-associated cardiac hypertrophy in female mice is accompanied by alterations in diverse miRNAs, and suggest that the miR-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy.


Asunto(s)
Cardiomegalia , MicroARNs , Animales , Cardiomegalia/metabolismo , Dieta , Femenino , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Obesidad/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción SOXD/metabolismo
4.
J Cell Physiol ; 234(6): 9399-9407, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30362585

RESUMEN

Several studies have shown the role of microRNAs (miRNAs) in myocardial dysfunction in response to ischemia/reperfusion (I/R). In this study, we investigated the impact of high fat (HF) diet in the myocardial susceptibility to I/R injury, as well as in the expression of miRNA-29b. Isolated heart experiments using the ex vivo Langendorff perfusion model were used to induce cardiac I/R injury. HF diet-induced cardiac hypertrophy and impaired cardiac functional recovery after I/R. miRNA-29b, which targets Col1, was reduced in the heart of HF diet-fed mice, whereas the cardiac expression of Col1 was increased. In addition, hypoxia-reoxygenation (H/R) reduced the expression of miRNA-29b in cardiomyoblasts cultures. However, the overexpression of miRNA-29b in cardiomyoblasts reduced p53 mRNA levels and H/R injury, suggesting that downregulation of miRNA-29b may be involved in I/R injury. Together, our findings suggest that the reduced expression of miRNA-29b may be involved in the deteriorated cardiac functional recovery following I/R in obese mice.


Asunto(s)
Dieta Alta en Grasa , MicroARNs/genética , Daño por Reperfusión Miocárdica/genética , Miocardio/metabolismo , Miocardio/patología , Animales , Peso Corporal , Línea Celular , Colágeno/genética , Colágeno/metabolismo , Dislipidemias/complicaciones , Dislipidemias/patología , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/patología , Pruebas de Función Cardíaca , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/patología , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda