Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Molecules ; 28(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771182

RESUMEN

Two novel 1D heterobimetallic compounds {[MnIII(SB2+)MIII(CN)6]·4H2O}n (SB2+ = N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate) based on orbitally degenerate cyanidometallates [OsIII(CN)6]3- (1) and [RuIII(CN)6]3- (2) and MnIII Schiff base complex were synthesized and characterized structurally and magnetically. Their crystal structures consist of electrically neutral, well-isolated chains composed of alternating [MIII(CN)6]3- anions and square planar [MnIII(SB2+)]3+ cations bridged by cyanide groups. These -ion magnetic anisotropy of MnIII centers. These results indicate that the presence of compounds exhibit single-chain magnet (SCM) behavior with the energy barriers of Δτ1/kB = 73 K, Δτ2/kB = 41.5 K (1) and Δτ1/kB = 51 K, Δτ2 = 27 K (2). Blocking temperatures of TB = 2.8, 2.1 K and magnetic hysteresis with coercive fields (at 1.8 K) of 8000, 1600 Oe were found for 1 and 2, respectively. Theoretical analysis of the magnetic data reveals that their single-chain magnet behavior is a product of a complicated interplay of extremely anisotropic triaxial exchange interactions in MIII(4d/5d)-CN-MnIII fragments: -JxSMxSMnx-JySMySMny-JzSMzSMnz, with opposite sign of exchange parameters Jx = -22, Jy = +28, Jz = -26 cm-1 and Jx = -18, Jy = +20, Jz = -18 cm-1 in 1 and 2, respectively) and single orbitally degenerate [OsIII(CN)6]3- and [RuIII(CN)6]3- spin units with unquenched orbital angular momentum in the chain compounds 1 and 2 leads to a peculiar regime of slow magnetic relaxation, which is beyond the scope of the conventional Glaubers's 1D Ising model and anisotropic Heisenberg model.

2.
Molecules ; 26(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34834001

RESUMEN

A series of six seven-coordinate pentagonal-bipyramidal (PBP) erbium complexes, with acyclic pentadentate [N3O2] Schiff-base ligands, 2,6-diacetylpyridine bis-(4-methoxybenzoylhydrazone) [H2DAPMBH], or 2,6-diacethylpyridine bis(salicylhydrazone) [H4DAPS], and various apical ligands in different charge states were synthesized: [Er(DAPMBH)(C2H5OH)Cl] (1); [Er(DAPMBH)(H2O)Cl]·2C2H5OH (2); [Er(DAPMBH)(CH3OH)Cl] (3); [Er(DAPMBH)(CH3OH)(N3)] (4); [(Et3H)N]+[Er(H2DAPS)Cl2]- (5); and [(Et3H)N]+[Y0.95Er0.05(H2DAPS)Cl2]- (6). The physicochemical properties, crystal structures, and the DC and AC magnetic properties of 1-6 were studied. The AC magnetic measurements revealed that most of Compounds 1-6 are field-induced single-molecule magnets, with estimated magnetization energy barriers, Ueff ≈ 16-28 K. The experimental study of the magnetic properties was complemented by theoretical analysis based on ab initio and crystal field calculations. An experimental and theoretical study of the magnetism of 1-6 shows the subtle impact of the type and charge state of the axial ligands on the SMM properties of these complexes.

3.
Inorg Chem ; 59(1): 563-578, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31858796

RESUMEN

The syntheses, structure and magnetic properties are reported for five novel 1D polymeric azido-bridged lanthanide complexes with the general formula {[Ln(DAPMBH)(N3)C2H5OH]C2H5OH}n where H2DAPMBH = 2,6-diacetylpyridine bis(4-methoxybenzoylhydrazone)-a new pentadentate pyridine-base [N3O2] ligand and Ln = Dy (1), Y0.930Dy0.070 (2), Er (3), Y0.923Er0.077 (4), and Gd (5). X-ray diffraction analysis of 1-5 show that the central lanthanide atoms are eight-coordinated with the N5O3 donor set originating from the ligand DAPMBH, one coordinated ethanol molecule and two end-to-end type N3- bridges connecting the metal centers into infinite chain. The [LnN5O3] coordination polyhedron can be regarded as a distorted dodecahedron (D2d). AC magnetic measurements revealed that compounds 1-4 show field-induced single-molecule magnet behavior, with estimated energy barriers Ueff ≈ 47-17 K. The experimental study of magnetic properties was complemented by theoretical analysis based on crystal-field calculations. Direct current magnetic susceptibility studies revealed marginally weak intrachain exchange interaction between Ln3+ ions mediated by the end-to-end azide bridging groups (J ≈ -0.015 cm-1 for 5). Comparative analysis of static and dynamic magnetic properties of magnetically concentrated (1, 3) and diluted (2, 4) Dy and Er compounds showed that, despite fascinating 1D azido-bridged chain structure, compounds 1 and 3 are not single-chain magnets; their magnetic behavior is largely due to single-ion magnetic anisotropy of individual Ln3+ ions.

4.
Chemistry ; 25(64): 14583-14597, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31361924

RESUMEN

Reactions of [Mn(H2 dapsc)Cl2 ]⋅H2 O (dapsc=2,6- diacetylpyridine bis(semicarbazone)) with K3 [Fe(CN)6 ] and (PPh4 )3 [Fe(CN)6 ] lead to the formation of the chain polymeric complex {[Mn(H2 dapsc)][Fe(CN)6 ][K(H2 O)3.5 ]}n ⋅1.5n H2 O (1) and the discrete pentanuclear complex {[Mn(H2 dapsc)]3 [Fe(CN)6 ]2 (H2 O)2 }⋅4 CH3 OH⋅3.4 H2 O (2), respectively. In the crystal structure of 1 the high-spin [MnII (H2 dapsc)]2+ cations and low-spin hexacyanoferrate(III) anions are assembled into alternating heterometallic cyano-bridged chains. The K+ ions are located between the chains and are coordinated by oxygen atoms of the H2 dapsc ligand and water molecules. The magnetic structure of 1 is built from ferrimagnetic chains, which are antiferromagnetically coupled. The complex exhibits metamagnetism and frequency-dependent ac magnetic susceptibility, indicating single-chain magnetic behavior with a Mydosh-parameter φ=0.12 and an effective energy barrier (Ueff /kB ) of 36.0 K with τ0 =2.34×10-11  s for the spin relaxation. Detailed theoretical analysis showed highly anisotropic intra-chain spin coupling between [FeIII (CN)6 ]3- and [MnII (H2 dapsc)]2+ units resulting from orbital degeneracy and unquenched orbital momentum of [FeIII (CN)6 ]3- complexes. The origin of the metamagnetic transition is discussed in terms of strong magnetic anisotropy and weak AF interchain spin coupling.

5.
Inorg Chem ; 56(15): 8926-8943, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28686422

RESUMEN

Two one-dimensional cyano-bridged coordination polymers, namely, {[MnII(dapsc)][MnIII(CN)6][K(H2O)2.75(MeOH)0.5]}n·0.5n(H2O) (I) and {[MnII(dapsc)][MnIII(CN)6][K(H2O)2(MeOH)2]}n (II), based on alternating high-spin MnII(dapsc) (dapsc = 2,6-diacetylpyridine bis(semicarbazone)) complexes and low-spin orbitally degenerate hexacyanomanganate(III) complexes were synthesized and characterized structurally and magnetically. Static and dynamic magnetic measurements reveal a single-chain magnet (SCM) behavior of I with an energy barrier of Ueff ≈ 40 K. Magnetic properties of I are analyzed in detail in terms of a microscopic theory. It is shown that compound I refers to a peculiar case of SCM that does not fall into the usual Ising and Heisenberg limits due to unconventional character of the MnIII-CN-MnII spin coupling resulting from a nonmagnetic singlet ground state of orbitally degenerate complexes [MnIII(CN)6]3-. The prospects of [MnIII(CN)6]3- complex as magnetically anisotropic molecular building block for engineering molecular magnets are critically analyzed.

6.
Inorg Chem ; 54(23): 11339-55, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26566074

RESUMEN

The origin of contrasting single-molecule magnet (SMM) behavior of three MnII2MoIII complexes based on [MoIII(CN)7]4­ heptacyanomolybdate is analyzed; only the apical Mn2Mo isomer exhibits SMM properties with Ueff = 40.5 cm(-1) and TB = 3.2 K, while the two equatorial isomers are simple paramagnets [Qian, K.; J. Am. Chem. Soc. 2013, 135, 13302]. A microscopic theory of anisotropic spin coupling between orbitally degenerate [MoIII(CN)7](4-) complexes (pentagonal bipyramid) and bound MnII ions is developed. It is shown that the [MoIII(CN)7](4-) complex has a unique property of uniaxial anisotropic spin coupling in the apical and equatorial MoIII-CN-MnII pairs, H̑eff = -Jxy(SMoxSMnx + SMoySMny) - JzSMozSMnz, regardless of their actual low symmetry. The difference in the SMM behavior originates from a different ratio between the anisotropic exchange parameters Jz and Jxy for the apical and equatorial Mo-CN-Mn groups. In the apical Mn2Mo isomer, an Ising-type anisotropic spin coupling (Jz = -34, Jxy = -11 cm(-1)) produces a double-well potential of spin states resulting in SMM behavior. Exchange anisotropy of an xy-type (|Jz| < |Jxy|) in the equatorial Mn2Mo isomers results in a single-well potential with no SMM properties. The prospects of anisotropic uniaxial spin coupling in engineering of high Ueff and TB values are discussed.

7.
Inorg Chem ; 53(19): 10291-300, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25219567

RESUMEN

Substitution of the organic cation X in the 1D polymer, (X)2[Mn(acacen)Fe(CN)6], leads to an essential change in magnetic behavior. Due to the presence of more voluminous Ph4P(+) cations, the polyanion has a more geometrically distorted chain skeleton and, as a consequence, enhanced single chain magnet (SCM) characteristics compared to those for Et4N(+). The Arrhenius relaxation energy barriers, the exchange interaction constant and the zero-field splitting anisotropy of Mn(III) are determined from the analysis of magnetic measurements. The discussion is supported with ligand field calculations for [Fe(CN)6](3-) that unveils the significant anisotropy of Fe magnetic moments.

8.
Inorg Chem ; 53(19): 10217-31, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25250555

RESUMEN

A new highly anisotropic coordination heterobimetallic polymer [Mn(III)(Schiff-base)]3[Re(IV)(CN)7] was synthesized and characterized structurally and magnetically. The single crystal X-ray analysis has revealed that this is the first framework among the complexes composed of homoleptic cyanometallate and Mn(III) complex of the tetradentate Schiff base ligand. A formation of 3D assembly is possible due to both the pentagonal bipyrimidal geometry of the cyanometallate unit and suitable size of constituents: [Re(CN)7](3-) and [Mn(III)(acacen)](+), where acacen = N,N'-ethylenebis(acetylacetoneiminato). The powder and crystal magnetic studies show that the compound undergoes an antiferromagnetic ordering of a complicated character below Neel temperature of 13 K, and exhibits a metamagnetic behavior and strong magnetic anisotropy similar to those observed in related 3D Mn(II)-[Mo(CN)7](4-) systems. Unusual magnetic properties of [Mn(III)(acacen)]3[Re(IV)(CN)7] (1) originate from an interplay of Re-Mn anisotropic spin coupling and ZFS effect of Mn(III) ions with a noncollinear orientation of the local magnetic axes in the cyano-bridged 3D network. A theoretical model of anisotropic spin coupling between orbitally degenerate [Re(IV)(CN)7](3-) complexes and Mn(III) ions is developed, and specific microscopic mechanisms of highly anisotropic spin coupling in Re(IV)-CN-Mn(III) linkages in complex 1 are analyzed in detail.

9.
Chemistry ; 19(11): 3693-701, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23386431

RESUMEN

We have investigated the single-molecule magnets [Mn(III)2 (5-Brsalen)2 (MeOH)2 M(III) (CN)6 ]NEt4 (M=Os (1) and Ru (2); 5-Brsalen=N,N'-ethylenebis(5-bromosalicylidene)iminate) by frequency-domain Fourier-transform terahertz electron paramagnetic resonance (THz-EPR), inelastic neutron scattering, and superconducting quantum interference device (SQUID) magnetometry. The combination of all three techniques allows for the unambiguous experimental determination of the three-axis anisotropic magnetic exchange coupling between Mn(III) and Ru(III) or Os(III) ions, respectively. Analysis by means of a spin-Hamiltonian parameterization yields excellent agreement with all experimental data. Furthermore, analytical calculations show that the observed exchange anisotropy is due to the bent geometry encountered in both 1 and 2, whereas a linear geometry would lead to an Ising-type exchange coupling.

10.
Dalton Trans ; 50(48): 18143-18154, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34854436

RESUMEN

We report the synthesis, crystal structure and magnetic properties of the new heptacoordinated mononuclear erbium(III) complex (Et3NH)[Er(H2DAPS)Cl2] (H4DAPS = 2,6-diacetylpyridine bis-(salicylhydrazone)) (1). The coordination polyhedron around the Er(III) ion features a slightly distorted pentagonal bipyramid formed by the pentagonal N3O2 chelate ring of the H2DAPS ligand in the equatorial plane and two apical chloride ligands. Detailed high-frequency/high-field electron paramagnetic resonance (HF-EPR) studies of 1 result in the precise determination of the crystal field (CF) splitting energies (0, 290 and 460 GHz) and effective g-values of the three lowest Kramers doublets (KDs) of the Er(III) ion. The obtained HF-EPR data are in good agreement with the results from CF analysis for the Er(III) ion based on the simulation of the dc magnetic data of 1. The results from dynamic susceptibility measurements indicate that there is no slow relaxation of magnetisation behaviour. This observation is discussed in terms of the electronic structure of 1 obtained from experimental and theoretical results.

11.
Dalton Trans ; 49(43): 15287-15298, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33112327

RESUMEN

A series of three mononuclear pentagonal-bipyramidal V(iii) complexes with the equatorial pentadentate N3O2 ligand (2,6-diacethylpyridinebis(benzoylhydrazone), H2DAPBH) in the different charge states (H2DAPBH0, HDAPBH1-, DAPBH2-) and various apical ligands (Cl-, CH3OH, SCN-) were synthesized and characterized structurally and magnetically: [V(H2DAPBH)Cl2]Cl·C2H5OH (1), [V(HDAPBH)(NCS)2]·0.5CH3CN·0.5CH3OH (2) and [V(DAPBH)(CH3OH)2]Cl·CH3OH (3). All three complexes reveal paramagnetic behavior, resulting from isolated S = 1 spins with positive zero-field splitting energy expected for the high-spin ground state of the V3+ (3d2) ion in a PBP coordination. Detailed high-field EPR measurements for compound 3 show that its magnetic properties are best described by using the spin Hamiltonian with the positive ZFS energy (D = +4.1 cm-1) and pronounced dimer-like antiferromagnetic spin coupling (J = -1.1 cm-1). Theoretical analysis based on superexchange calculations reveals that the long-range spin coupling between distant V3+ ions (8.65 Å) is mediated through π-stacking contacts between the planar DAPBH2- ligands of two neighboring [V(DAPBH)(CH3OH)2]+ complexes.

12.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 5): 903-913, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830770

RESUMEN

Single crystals of Rb2CaCu6(PO4)4O2 were synthesized by a hydrothermal method in the multicomponent system CuCl2-Ca(OH)2-RbCl-B2O3-Rb3PO4. The synthesis was carried out in the temperature range from 690 to 700 K and at the general pressure of 480-500 atm [1 atm = 101.325 kPa] from the mixture in the molar ratio 2CuO:CaO:Rb2O:B2O3:P2O5. The crystals studied by single-crystal X-ray analysis were found to be monoclinic, space group C2, a = 16.8913 (4), b = 5.6406 (1), c = 8.3591 (3) Å, ß = 93.919 (3)°, V = 794.57 (4) Å3. The crystal structure of Rb2CaCu6(PO4)4O2 is similar to that of shchurovskyite and dmisokolovite and is based upon a heteropolyhedral open framework formed by polar layers of copper polyhedra linked via isolated PO4 tetrahedra. The presence of well-isolated 2D heteropolyhedral layers in the title compound suggests low-dimensional magnetic behavior which is masked, however, by the fierce competition between multiple ferromagnetic and antiferromagnetic exchange interactions. At TC = 25 K, Rb2CaCu6(PO4)4O2 reaches a magnetically ordered state with large residual magnetization.

14.
J Am Chem Soc ; 125(32): 9750-60, 2003 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-12904041

RESUMEN

Unusual spin coupling between Mo(III) and Mn(II) cyano-bridged ions in bimetallic molecular magnets based on the [Mo(III)(CN)(7)](4-) heptacyanometalate is analyzed in terms of the superexchange theory. Due to the orbital degeneracy and strong spin-orbit coupling on Mo(III), the ground state of the pentagonal-bipyramidal [Mo(III)(CN)(7)](4-) complex corresponds to an anisotropic Kramers doublet. Using a specially adapted kinetic exchange model we have shown that the Mo(III)-CN-Mn(II) superexchange interaction is extremely anisotropic: it is described by an Ising-like spin Hamiltonian JS(z)(Mo) S(z)(Mn) for the apical pairs and by the J(z)S(z)(Mo) S(z)(Mn) + J(xy)(Sx(Mo) Sx(Mn) + Sy(Mo) Sy(Mn)) spin Hamiltonian for the equatorial pairs (in the latter case J(z) and J(xy) can have opposite signs). This anisotropy resulted from an interplay of several Ising-like (Sz(Mo) Sz(Mn)) and isotropic (S(Mo)S(Mn)) ferro- and antiferromagnetic contributions originating from metal-to-metal electron transfers through the pi and sigma orbitals of the cyano bridges. The Mo(III)-CN-Mn(II) exchange anisotropy is distinct from the anisotropy of the g-tensor of [Mo(III)(CN)(7)](4-); moreover, there is no correlation between the exchange anisotropy and g-tensor anisotropy. We indicate that highly anisotropic spin-spin couplings (such as the Ising-like JS(z)(Mo) S(z)(Mn)) combined with large exchange parameters represent a very important source of the global magnetic anisotropy of polyatomic molecular magnetic clusters. Since the total spin of such clusters is no longer a good quantum number, the spin spectrum pattern can differ considerably from the conventional scheme described by the zero-field splitting of the isotropic spin of the ground state. As a result, the spin reorientation barrier of the magnetic cluster may be considerably larger. This finding opens a new way in the strategy of designing single-molecule magnets (SMM) with unusually high blocking temperatures. The use of orbitally degenerate complexes with a strong spin-orbit coupling (such as [Mo(III)(CN)(7)](4-) or its 5d analogues) as building blocks is therefore very promising for these purposes.

15.
J Am Chem Soc ; 125(13): 3694-5, 2003 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-12656588

RESUMEN

High-level ab initio calculations on the excited states of Cr(CN)63- and Mo(CN)63- are reported. For the latter complex, a rather large 10 Dq value of 42 000 cm-1 is obtained, reflecting the increased covalency. The lowest lying charge-transfer transitions for both complexes are predicted to be of the type ligand-to-metal, an assignment in agreement with the photochemical behavior of Cr(CN)63-. A good correspondence between the well-known experimental spectrum of the chromium complex and the theoretical CASPT2 excitation energies is found.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda