Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Nat Prod ; 84(5): 1681-1706, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33974423

RESUMEN

Spliceostatins and thailanstatins are intriguing natural products due to their structural features as well as their biological significance. This family of natural products has been the subject of immense synthetic interest because they exhibit very potent cytotoxicity in representative human cancer cell lines. The cytotoxic properties of these natural products are related to their ability to inhibit spliceosomes. FR901564 and spliceostatins have been shown to inhibit spliceosomes by binding to their SF3B component. Structurally, these natural products contain two highly functionalized tetrahydropyran rings with multiple stereogenic centers joined by a diene moiety and an acyclic side chain linked with an amide bond. Total syntheses of this family of natural products led to the development of useful synthetic strategies, which enabled the synthesis of potent derivatives. The spliceosome modulating properties of spliceostatins and synthetic derivatives opened the door for understanding the underlying spliceosome mechanism as well as the development of new therapies based upon small-molecule splicing modulators. This review outlines the total synthesis of spliceostatins, synthetic studies of structural derivatives, and their bioactivity.


Asunto(s)
Antineoplásicos/farmacología , Piranos/farmacología , Empalme del ARN/efectos de los fármacos , Empalmosomas/efectos de los fármacos , Antineoplásicos/síntesis química , Productos Biológicos/síntesis química , Productos Biológicos/farmacología , Humanos , Estructura Molecular , Piranos/síntesis química
2.
Eur J Med Chem ; 255: 115385, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37150084

RESUMEN

Structure-based design, synthesis, X-ray structural studies, and biological evaluation of a new series of potent HIV-1 protease inhibitors are described. These inhibitors contain various pyridyl-pyrimidine, aryl thiazole or alkylthiazole derivatives as the P2 ligands in combination with darunavir-like hydroxyethylamine sulfonamide isosteres. These heterocyclic ligands are inherent to kinase inhibitor drugs, such as nilotinib and imatinib. These ligands are designed to make hydrogen bonding interactions with the backbone atoms in the S2 subsite of HIV-1 protease. Various benzoic acid derivatives have been synthesized and incorporation of these ligands provided potent inhibitors that exhibited subnanomolar level protease inhibitory activity and low nanomolar level antiviral activity. Two high resolution X-ray structures of inhibitor-bound HIV-1 protease were determined. These structures provided important ligand-binding site interactions for further optimization of this class of protease inhibitors.


Asunto(s)
Inhibidores de la Proteasa del VIH , VIH-1 , Inhibidores de la Proteasa del VIH/química , VIH-1/metabolismo , Mesilato de Imatinib/farmacología , Ligandos , Rayos X , Proteasa del VIH/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Relación Estructura-Actividad
3.
ChemMedChem ; 17(22): e202200440, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36165855

RESUMEN

COVID-19, caused by SARS-CoV-2 infection, continues to be a major public health crisis around the globe. Development of vaccines and the first cluster of antiviral drugs has brought promise and hope for prevention and treatment of severe coronavirus disease. However, continued development of newer, safer, and more effective antiviral drugs are critically important to combat COVID-19 and counter the looming pathogenic variants. Studies of the coronavirus life cycle revealed several important biochemical targets for drug development. In the present review, we focus on recent drug design and medicinal chemistry efforts in small molecule drug discovery, including the development of nirmatrelvir that targets viral protein synthesis and remdesivir and molnupiravir that target viral RdRp. These are recent FDA approved drugs for the treatment of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Humanos , SARS-CoV-2 , Química Farmacéutica , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Desarrollo de Medicamentos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda