Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Proteome Res ; 23(8): 3124-3140, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39052308

RESUMEN

A multimetabo-lipid-prote-omics workflow was developed to characterize the molecular interplay within proximal (PC) and distal (DC) colonic epithelium of healthy mice. This multiomics data set lays the foundation to better understand the two tissue types and can be used to study, for example, colon-related diseases like colorectal cancer or inflammatory bowel disease. First, the methyl tert-butyl ether extraction method was optimized, so that from a single tissue biopsy >350 reference-matched metabolites, >1850 reference-matched lipids, and >4500 proteins were detected by using targeted and untargeted metabolomics, untargeted lipidomics, and proteomics. Next, each omics-data set was analyzed individually and then merged with the additional omics disciplines to generate a deep understanding of the underlying complex regulatory network within the colon. Our data demonstrates, for example, differences in mucin formation, detected on substrate level as well as on enzyme level, and altered lipid metabolism by the detection of phospholipases hydrolyzing sphingomyelins to ceramides. In conclusion, the combination of the three mass spectrometry-based omics techniques can better entangle the functional and regional differences between PC and DC tissue compared to each single omics technique.


Asunto(s)
Colon , Mucosa Intestinal , Metabolismo de los Lípidos , Lipidómica , Metabolómica , Proteómica , Animales , Colon/metabolismo , Ratones , Metabolómica/métodos , Proteómica/métodos , Mucosa Intestinal/metabolismo , Lipidómica/métodos , Flujo de Trabajo , Lípidos/análisis , Ratones Endogámicos C57BL , Espectrometría de Masas/métodos , Éteres Metílicos
2.
Molecules ; 20(10): 18047-65, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26437395

RESUMEN

Non-targeted ¹H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA) were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.


Asunto(s)
Líquenes/química , Metabolómica/métodos , Extractos Vegetales/análisis , Espectroscopía de Protones por Resonancia Magnética/métodos , Ascomicetos/química , Ascomicetos/clasificación , ADN Ribosómico/análisis , Líquenes/clasificación , Líquenes/genética , Filogenia , Extractos Vegetales/química , Análisis de Componente Principal , Especificidad de la Especie
3.
J Agric Food Chem ; 72(20): 11480-11492, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38733562

RESUMEN

Food-derived peptides with an inhibitory effect on dipeptidyl peptidase IV (DPP-IV) can be used as an additive treatment for type 2 diabetes. The inhibitory potential of food depends on technological protein hydrolysis and gastrointestinal digestion, as the peptides only act after intestinal resorption. The effect of malting as a hydrolytic step on the availability of these peptides in grains has yet to be investigated. In this study, quinoa was malted under systematic temperature, moisture, and time variations. In the resulting malts, the DPP-IV inhibition reached a maximum of 45.02 (±10.28) %, whereas the highest overall concentration of literature-known inhibitory peptides was 4.07 µmol/L, depending on the malting parameters. After in vitro gastrointestinal digest, the inhibition of most malts, as well as the overall concentration of inhibitory peptides, could be increased significantly. Additionally, the digested malts showed higher values in both the inhibition and the peptide concentration than the unmalted quinoa. Concerning the malting parameters, germination time had the highest impact on the inhibition and the peptide concentration after digest. An analysis of the protein sizes before and after malting gave first hints toward the origin of these peptides, or their precursors, in quinoa.


Asunto(s)
Chenopodium quinoa , Inhibidores de la Dipeptidil-Peptidasa IV , Péptidos , Chenopodium quinoa/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/química , Manipulación de Alimentos , Germinación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Hidrólisis , Semillas/química , Semillas/metabolismo , Humanos , Digestión
4.
Nutrients ; 16(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38337658

RESUMEN

Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium (Tropaeolum majus) is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition. Spot urinary BITC excretion highly correlated with a weak but significant antibacterial effect against Escherichia coli. A significant increase in human beta defensin 1 as a parameter for host defense was seen in urine and exhaled breath condensate (EBC) upon verum intervention. Pre-to-post analysis revealed that mean gut microbiome composition did not significantly differ between groups, nor did the circulating serum metabolome. On an individual level, some large changes were observed between sampling points, however. Explorative Spearman rank correlation analysis in subgroups revealed associations between gut microbiota and the circulating metabolome, as well as between changes in blood markers and bacterial gut species.


Asunto(s)
Microbioma Gastrointestinal , Nasturtium , Tropaeolum , Femenino , Humanos , Isotiocianatos/farmacología , Bacterias , Escherichia coli , Metaboloma
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda