RESUMEN
Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing a transitional taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome, and methylome of the Japanese subterranean termite Reticulitermes speratus Our analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression was prevalent in the R. speratus genome. The duplicated genes comprised diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense), and a novel class of termite lineage-specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but their expression patterns were highly variable, exhibiting caste biases. Some of the assayed duplicated genes were expressed in caste-specific organs, such as the accessory glands of the queen ovary and the frontal glands of soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification, leading to caste-biased expression and subfunctionalization and/or neofunctionalization conferring caste-specialized functions.
Asunto(s)
Genómica , Proteínas de Insectos/metabolismo , Isópteros/fisiología , Evolución Social , Transcriptoma , Animales , Evolución Biológica , Celulasas/metabolismo , Femenino , Duplicación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Isópteros/genéticaRESUMEN
Benthic annelids belonging to the family Syllidae show a distinctive sexual reproduction mode called "stolonization," in which posterior segments are transformed into a reproductive individual-like unit called a "stolon." Megasyllis nipponica forms a stolon head and a secondary tail in the middle of the trunk before a stolon detaches, while, in the case of posterior amputation, posterior regeneration initiates at the wound after amputation. To understand the difference between posterior regeneration and secondary-tail formation during stolonization, detailed comparisons between the developmental processes of these two tail-formation types were performed in this study. Morphological and inner structural observations (i.e., cell proliferation and muscular/nervous development) showed that some processes of posterior regeneration, such as blastema formation and muscular/nervous regeneration at the amputation site, are missing during secondary-tail formation. In contrast, the secondary tail showed some unique features, such as the formation of ventrolateral half-tail buds that later fused in the middle and muscle/nerve branches formed before the detachment of the stolon. These novel features in the process of stolonization are suggested to be adaptive since the animals need to recover a posterior end quickly to stolonize again.
Asunto(s)
Poliquetos , Regeneración , Cola (estructura animal) , Animales , Poliquetos/fisiología , Poliquetos/anatomía & histología , Poliquetos/crecimiento & desarrollo , Reproducción , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/fisiología , JapónRESUMEN
Quantum mechanics (QM)-driven 1H iterative functionalized spin analysis produces HifSA profiles, which encode the complete 1H spin parameters ("nuclear genotype") of analytes of interest. HifSA profiles enable the establishment of digital reference standards (dRS) that are portable, FAIR (findable - accessible - interoperable - reusable), and fit for the purpose of quantitative 1H NMR (qHNMR) analysis at any magnetic field. This approach enhances the sustainability of analytical standards. Moreover, the analyte-specific complete chemical shift and J-coupling information in HifSA-based dRS enable computational quantitation of substances in mixtures via QM-total-line-shape fitting (QM-qHNMR). We present the proof of concept for HifSA-based dRS by resolving the highly overlapping NMR resonances in the experimental spectra ("nuclear phenotypes") of the diastereomeric mixture of (2RS, 4RS)- and (2RS, 4SR)-difenoconazole (DFZ), a widely used antifouling food additive. The underlying 1H spin parameters are highly conserved in various solvents, are robust against variation in measurement temperature, and work across a wide range of magnetic fields. QM-qHNMR analysis of DFZ samples at 80, 400, 600, and 800 MHz showed high congruence with metrological reference values. Furthermore, this study introduces QM-qHNMR combined with chiral shift reagents for the analysis of all four DFZ stereoisomers: (2R, 4R)-, (2S, 4S)-, (2R, 4S)-, and (2S, 4R)-DFZ to perform chiral qHNMR measurements.
Asunto(s)
Campos Magnéticos , Espectroscopía de Resonancia Magnética , Teoría Cuántica , Estándares de Referencia , Espectroscopía de Resonancia Magnética/métodos , Triazoles/química , Triazoles/análisisRESUMEN
BACKGROUND: Various morphological adaptations are associated with symbiotic relationships between organisms. One such adaptation is seen in the nemertean genus Malacobdella. All species in the genus are commensals of molluscan hosts, attaching to the surface of host mantles with a terminal sucker. Malacobdella possesses several unique characteristics within the order Monostilifera, exhibiting the terminal sucker and the absence of eyes and apical/cerebral organs, which are related to their adaptation to a commensal lifestyle. Nevertheless, the developmental processes that give rise to these morphological characteristics during their transition from free-living larvae to commensal adults remain uncertain. RESULTS: In the present study, therefore, we visualized the developmental processes of the internal morphologies during postembryonic larval stages using fluorescent molecular markers. We demonstrated the developmental processes, including the formation of the sucker primordium and the functional sucker. Furthermore, our data revealed that sensory organs, including apical/cerebral organs, formed in embryonic and early postembryonic stages but degenerated in the late postembryonic stage prior to settlement within their host using a terminal sucker. CONCLUSIONS: This study reveals the formation of the terminal sucker through tissue invagination, shedding light on its adhesion mechanism. Sucker muscle development likely originates from body wall muscles. Notably, M. japonica exhibits negative phototaxis despite lacking larval ocelli. This observation suggests a potential role for other sensory mechanisms, such as the apical and cerebral organs identified in the larvae, in facilitating settlement and adhesive behaviors. The loss of sensory organs during larval development might reflect a transition from planktonic feeding to a stable, host-associated lifestyle. This study also emphasizes the need for further studies to explore the phylogenetic relationships within the infraorder Amphiporiina and investigate the postembryonic development of neuromuscular systems in closely related taxa to gain a more comprehensive understanding of ecological adaptations in Nemertea.
RESUMEN
The spectrum of 31P-NMR is fundamentally simpler than that of 1H-NMR; consequently identifying the target signal(s) for quantitation is simpler using quantitative 31P-NMR (31P-qNMR) than using quantitative 1H-NMR (1H-qNMR), which has been already established as an absolute determination method. We have previously reported a 31P-qNMR method for the absolute determination of cyclophosphamide hydrate and sofosbuvir as water-soluble and water-insoluble organophosphorus compounds, respectively. This study introduces the purity determination of brigatinib (BR), an organophosphorus compound with limited water solubility, using 31P-qNMR at multiple laboratories. Phosphonoacetic acid (PAA) and 1,4-BTMSB-d4 were selected as the reference standards (RSs) for 31P-qNMR and 1H-qNMR, respectively. The qNMR solvents were chosen based on the solubilities of BR and the RSs for qNMR. CD3OH was selected as the solvent for 31P-qNMR measurements to prevent the influence of deuterium exchange caused by the presence of exchangeable intramolecular protons of BR and PAA on the quantitative values, while CD3OD was the solvent of choice for the 1H-qNMR measurements to prevent the influence of water signals and the exchangeable intramolecular protons of BR and PAA. The mean purity of BR determined by 31P-qNMR was 97.94 ± 0.69%, which was in agreement with that determined by 1H-qNMR (97.26 ± 0.71%), thus indicating the feasibility of purity determination of BR by 31P-qNMR. Therefore, the findings of this study may provide an effective method that is simpler than conventional 1H-qNMR for the determination of organophosphorus compounds.
Asunto(s)
Compuestos Organofosforados , Protones , Estándares de Referencia , Agua , SolventesRESUMEN
Caste development in social insects requires the coordination of molting and metamorphosis during postembryonic development. In termites, i.e., hemimetabolous eusocial insects, caste fate is determined during postembryonic development. However, it is not fully understood how the mechanisms of molting/metamorphosis are regulated in the course of differentiation between reproductive and sterile castes. In termites, only reproductives derived from alates are imagos and other sterile castes (including developmentally-terminal soldier caste) are basically juveniles or nymphs. Furthermore, supplementary reproductives that appear when the original queens and kings die or become senescent, exhibit larval features such as winglessness, and are called neotenics. Therefore, the question of whether neotenics are larvae or imagos is still under debate. In this study, by inducing female neotenic differentiation in a damp-wood termite Hodotermopsis sjostedti, morphological investigations together with juvenile hormone (JH) quantification and expression/functional analyses of genes responsible for molting and/or metamorphosis were carried out. JH titer and expression of one of the downstream genes (Kr-h1) were shown to be temporarily lowered, but increased just prior to the molt into neotenics, while consistently lowered in imaginal molt (i.e., alate differentiation). In contrast, ecdysone-related genes (EcR and E93) were upregulated at both neotenic and alate differentiation, suggesting that the heterochronic actions of ecdysone and JH lead the neotenic differentiation. Moreover, expression analyses, supported by reverse genetic experiments, showed that EcR and E93 were specifically upregulated in genital sternites (EcR and E93) and ovaries (E93) and required for the development of imaginal characters. These results suggest that the resultant mosaic phenotype of female neotenics is due to modular responses of different body parts to hormonal actions.
Asunto(s)
Isópteros , Animales , Ecdisona/metabolismo , Femenino , Isópteros/genética , Isópteros/metabolismo , Hormonas Juveniles/metabolismo , Muda/genética , Diferenciación SexualRESUMEN
Despite being one of the bilaterians, the body plan of echinoderms shifts from bilateral symmetry to five-fold radial, or pentaradial symmetry during embryogenesis or their metamorphosis. While the clarification of the developmental mechanism behind this transition will be a basis for understanding their unique body plan evolution, it is still poorly understood. With this regard, the hydrocoel, a mesodermal coelom formed on the left side of bilateral larva, would be a clue for understanding the mechanism as it is the first pentaradial structure that appears before metamorphosis and develops into the water vascular system of adults. By analyzing the development of a sea cucumber, Apostichopus japonicus, we found that the hydrocoel expresses genes related in muscle and neural formation such as myosin heavy chain, tropomyosin, soxC, and elav, implying that cells of the hydrocoel contributes to muscle and neural structures in the adult. Furthermore, ablation of one of the hydrocoel lobes led to incomplete development of adult pentameral structures. The ablation of primary hydrocoel lobes resulted in the reduction in tentacles and the ablation of secondary hydrocoel lobes resulted in the reduction in water vascular canals and nerve cords. Our findings suggest that the hydrocoel lobes may serve as a potential organizing center for establishing the pentaradial body plan in echinoderms.
Asunto(s)
Pepinos de Mar , Stichopus , Animales , Metamorfosis Biológica/fisiología , Equinodermos , AguaRESUMEN
BACKGROUND: Arthropods gradually change their forms through repeated molting events during postembryonic development. Anamorphosis, i.e., segment addition during postembryonic development, is seen in some arthropod lineages. In all millipede species (Myriapoda, Diplopoda), for example, postembryonic processes go through anamorphosis. Jean-Henri Fabre proposed 168 years ago the "law of anamorphosis", that is, "new rings appear between the penultimate ring and the telson" and "all apodous rings in a given stadium become podous rings in the next stadium", but the developmental process at the anamorphic molt remains largely unknown. In this study, therefore, by observing the morphological and histological changes at the time of molting, the detailed processes of leg- and ring-addition during anamorphosis were characterized in a millipede, Niponia nodulosa (Polydesmida, Cryptodesmidae). RESULTS: In the preparatory period, a few days before molting, scanning electron microscopy, confocal laser scanning microscopy, and histological observations revealed that two pairs of wrinkled leg primordia were present under the cuticle of each apodous ring. In the rigidation period, just prior to molt, observations of external morphology showed that a transparent protrusion was observed on the median line of the ventral surface on each apodous ring. Confocal laser scanning microscopy and histological observations revealed that the transparent protrusion covered by an arthrodial membrane contained a leg bundle consisting of two pairs of legs. On the other hand, ring primordia were observed anterior to the telson just before molts. CONCLUSIONS: Preceding the anamorphic molt in which two pairs of legs are added on an apodous ring, a transparent protrusion containing the leg pairs (a leg bundle) appears on each apodous ring. The morphogenetic process of the rapid protrusion of leg bundles, that is enabled by thin and elastic cuticle, suggested that millipedes have acquired a resting period and unique morphogenesis to efficiently add new legs and rings.
RESUMEN
In many crustacean species, an individual possesses both uniramous and biramous appendages that enable us to compare the two types on the same genetic background. Therefore, among the diverse morphologies of arthropod appendages, crustacean biramous appendages provide interesting subjects for studying the developmental mechanisms underlying appendage modifications. In this study, we report a malformed specimen of the terrestrial isopod Porcellio scaber, in which one of the pleopods was transformed into a different structure. Morphological observations of exoskeletons and musculatures by confocal scanning laser microscopy revealed that the transformed appendage was three-segmented, with at least the apical two segments having pereopod-like musculoskeletal structures. The apical segment of the transformed appendage lacked muscles, and the following segment had a pair of muscle bundles. These findings together with those of some previous studies of gene expression patterns in this species suggest that this anomaly could be caused by homeotic transformation of a flap-like pleopod into a three-segmented pereopod tip, which may be a homologous structure of the pleopod.
Asunto(s)
Artrópodos , Isópodos , Humanos , Animales , Isópodos/genética , MúsculosRESUMEN
Some teleost fishes change their sex, and some of these fishes have specific gonads known as "ovotestes," that is, gonads containing both ovarian and testicular tissues. In this study, we revealed the gonadal transformation process and cell dynamics during the female-to-male sex change in the harlequin sandsmelt, Parapercis pulchella (Pinguipetidae), in which females possess ovotestes. Histological observations revealed that although female ovotestes were composed of oocytes, a few cysts of male germ cells were observed among them. At the initial phase of sex change, male germ cells increased, and spermatogenesis proceeded. After that, oocytes decreased and finally disappeared, and the gonads became functional testes. Immunohistochemistry using antibodies against Pcna (proliferating cell nuclear antigen) as a cell proliferation marker revealed that spermatogonia were Pcna positive, whereas spermatocytes were negative, in female ovotestes. This suggests that spermatogenesis is arrested at the spermatocyte stage. In addition, some somatic cells surrounding oocytes, which were thought to be the female follicle cells, were Pcna positive during sex change, indicating that these cells proliferate during sex change and are reused in male testes after sex change. Also, immunostaining using antibodies against active cleaved-Caspase3a as an apoptosis marker demonstrated that oocytes degenerated through apoptotic cell death at the late transition stage. Together with previous findings in other fishes, these findings suggested that the histological processes in gonads during sex change, such as the order of developmental events, developmental fates of ovarian cavities, and ovotestis structures, are diversified among fish species. In contrast, cellular dynamics of female germ and somatic cells during sex change are common among protogynous species.
Asunto(s)
Gónadas , Ovario , Masculino , Femenino , Animales , Antígeno Nuclear de Célula en Proliferación/metabolismo , Gónadas/metabolismo , Peces/fisiología , Testículo/metabolismo , EspermatogoniasRESUMEN
In social insects, interactions among colony members trigger caste differentiation with morphological modifications. In termite soldier differentiation, the mandible size considerably increases through two moltings (via the presoldier stage) under the control of juvenile hormone (JH). Regulatory genes are predicted to provide patterning information that induces the mandible-specific cell proliferation. To identify factors responsible for the mandibular enlargement, expression analyses of 18 candidate genes were carried out in the termite Hodotermopsis sjostedti Among those, dachshund (dac), which identifies the intermediate domain along the proximodistal appendage axis, showed mandible-specific upregulation prior to the molt into presoldiers, which can explain the pattern of cell proliferation for the mandibular elongation. Knockdown of dac by RNAi reduced the mandibular length and distorted its morphology. Furthermore, the epistatic relationships among Methoprene tolerant, Insulin receptor, Deformed (Dfd) and dac were revealed by combined RNAi and qRT-PCR analyses, suggesting that dac is regulated by Dfd, downstream of the JH and insulin signaling pathways. Thus, caste-specific morphogenesis is controlled by interactions between the factors that provide spatial information and physiological status.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/metabolismo , Isópteros/embriología , Hormonas Juveniles/metabolismo , Mandíbula/embriología , Proteínas Nucleares/metabolismo , Animales , Conducta Animal , Tipificación del Cuerpo , Epistasis Genética , Perfilación de la Expresión Génica , Genes Homeobox , Insulina/metabolismo , Isópteros/genética , Muda , Morfogénesis , Interferencia de ARN , Transducción de SeñalRESUMEN
In sexual dimorphism, males often exhibit exaggerated characters as weapons or ornaments. Among the numerous amphipod species (Amphipoda, Crustacea) showing sexual dimorphism, caprellids (Caprellidae) are characterized by considerably larger males that possess weapons, although the developmental processes underlying these sex-related differences are largely unknown. Therefore, to clarify the process of sexual differentiation during postembryonic development in caprellids, morphometric analyses of Caprella scaura were conducted. Principal component analysis using 31 morphometric traits showed drastic allometric changes occurring at two ontogenetic body length (BL) points (i.e., 3.8 and 8.8 mm). In individuals larger than 3 mm, head spines appeared in both sexes, and penises did only in males, allowing the discrimination of juveniles from larvae. Moreover, in larger males (BL > 8.8 mm), traits used in reproductive behavior, i.e., the first antenna, second gnathopod, and first to fifth pereonites, were extremely exaggerated. Observations of pre-copulatory behavior along with morphological assays revealed that sexually mature males could be identified by the size ratio between the triangular projection and palmar spine on the propodus of the second gnathopod. In contrast, female maturation could be determined by the marginal setae of oostegites forming a brood pouch. The body size distribution of sexually mature females was concentrated within a narrow range of BLs (6-9 mm), whereas that of sexually mature males showed a broader range (BL 9-18 mm), suggesting that, in C. scaura, males continue to molt and grow even after sexual maturation via indeterminate growth, to increase their lifetime reproductive success.
Asunto(s)
Anfípodos , Anfípodos/anatomía & histología , Animales , Tamaño Corporal , Femenino , Masculino , Caracteres Sexuales , Diferenciación Sexual , EsqueletoRESUMEN
Quantitative 1H-NMR (1H-qNMR) is useful for determining the absolute purity of organic molecules; however, it is sometimes difficult to identify the target signal(s) for quantitation because of their overlap and complexity. Therefore, we focused on the 31P nucleus because of the simplicity of its signals and previously reported 31P-qNMR in D2O. Here we report 31P-qNMR of an organophosphorus compound, sofosbuvir (SOF), which is soluble in organic solvents. Phosphonoacetic acid (PAA) and 1,4-bis(trimethylsilyl)benzene-d4 (1,4-BTMSB-d4) were used as reference standards for 31P-qNMR and 1H-qNMR, respectively, in methanol-d4. The purity of SOF determined by 31P-qNMR was 100.63 ± 0.95%, whereas that determined by 1H-qNMR was 99.07 ± 0.50%. The average half bandwidths of the 31P signal of PAA and SOF were 3.38 ± 2.39 and 2.22 ± 0.19 Hz, respectively, suggesting that the T2 relaxation time of the PAA signal was shorter than that of SOF and varied among test laboratories. This difference most likely arose from the instability in the chemical shift due to the deuterium exchange of the acidic protons of PAA, which decreased the integrated intensity of the PAA signal. Next, an aprotic solvent, dimethyl sulfoxide-d6 (DMSO-d6), was used as the dissolving solvent with PAA and sodium 4,4-dimethyl-4-silapentanesulfonate-d6 (DSS-d6) as reference standards for 31P-qNMR and 1H-qNMR, respectively. SOF purities determined by 31P-qNMR and 1H-qNMR were 99.10 ± 0.30 and 99.44 ± 0.29%, respectively. SOF purities determined by 31P-qNMR agreed with the established 1H-qNMR values, suggesting that an aprotic solvent is preferable for 31P-qNMR because it is unnecessary to consider the effect of deuterium exchange.
Asunto(s)
Imagen por Resonancia Magnética , Sofosbuvir , Deuterio , Espectroscopía de Resonancia Magnética , Estándares de Referencia , SolventesRESUMEN
The goal of the qNMR Summit is to take stock of the status quo and the recent developments in qNMR research and applications in a timely and accurate manner. It provides a platform for both advanced and novice qNMR practitioners to receive a well-rounded update and discuss potential qNMR-related applications and collaborations. For over a decade, scientists from academia, industry, nonprofit institutions, and governmental bodies have focused on the standardization of qNMR methodology, as well as its metrological and pharmacopeial utility. This paper reviews key content of qNMR Summits 1.0 to 4.0 and puts into perspective the outcomes and available transcripts of the October 2019 Summit 5.0, with attendees from the United States, Canada, Japan, Korea, and several European countries. Summit presentations focused on qNMR methodology in the pharmaceutical industry, advanced quantitation algorithms, and promising developments.
Asunto(s)
Tecnología , Canadá , Japón , Estándares de Referencia , Estados UnidosRESUMEN
Although many animals that perform sexual reproduction exhibit sexual dimorphism, individuals with intersex traits between the traits of males and females appear in some species, depending on environmental factors. Ptychognathus ishii, a varunid crab, exhibits distinctive sexual dimorphism in the morphology of its abdomen, chelipeds and setal tufts on the chelipeds. In this study, however, we report for the first time that intersex individuals with intermediate characters between those of males and females were occasionally found in wild populations. Morphological features of intersex individuals are described. Their taxonomic positions are identified based on DNA sequences of part of the mitochondrial cytochrome c oxidase I (COI) gene. It was shown that the intersexuality was induced by entoniscid parasites, because all intersex individuals were parasitized by entoniscid isopods, identified as Entionella sp. The apparent correlation between parasitism and morphological anomalies suggests that the parasitic isopods affect physiological conditions, leading to the feminization of male hosts.
Asunto(s)
Braquiuros/parasitología , Trastornos del Desarrollo Sexual/parasitología , Caracteres Sexuales , Animales , Braquiuros/anatomía & histología , Braquiuros/genética , Femenino , Isópodos/clasificación , Masculino , Análisis de Secuencia de ADNRESUMEN
In bryozoans (phylum Bryozoa), representative colonial animals mostly found in marine environments, some species possess different types of individuals (heterozooids) specialized in different functions such as defense or structural support for their colonies. Among them, the best-known heterozooids are the avicularia, known to function as defenders. The differentiation processes of heterozooids, including avicularia, should be important keys to understand the evolutionary significance of bryozoans. However, the developmental process of avicularium formation remains to be fully understood. In this study, therefore, in order to understand the detailed developmental process and timing of avicularium formation, extensive observations were carried out in a bryozoan species, Bugulina californica (Cheilostomata, Bugulidae), that possesses adventitious avicularia, by performing stereomicroscopy on live materials, in addition to scanning electron microscopy and histological observations. The whole process can be divided into seven stages based on developmental events. Especially notably, at the earlier stages, there are three major budding events that produce proliferating cell masses corresponding to primordial tissues: (1) budding of the peduncle cushion at the outer margin of the distal part of a young autozooid, (2) budding of the head-part primordium from the peduncle cushion, and (3) budding of the polypide inside the head part. Experimental control of temperature showed that 20°C would be the best to maintain B. californica colonies.
Asunto(s)
Briozoos/crecimiento & desarrollo , Animales , Evolución Biológica , Briozoos/genética , Briozoos/ultraestructura , Microscopía Electrónica de RastreoRESUMEN
As a new absolute quantitation method for low-molecular compounds, quantitative NMR (qNMR) has emerged. In the Japanese Pharmacopoeia (JP), 15 compounds evaluated by qNMR are listed as reagents used as the HPLC reference standards in the assay of crude drug section of the JP. In a previous study, we revealed that humidity affects purity values of hygroscopic reagents and that (i) humidity control before and during weighing is important for a reproducible preparation and (ii) indication of the absolute amount (not purity value), which is not affected by water content, is important for hygroscopic products determined by qNMR. In this study, typical and optimal conditions that affect the determination of the purity of ginsenoside Rb1 (GRB1), saikosaponin a (SSA), and barbaloin (BB) (i.e., hygroscopic reagents) by qNMR were examined. First, the effect of humidity before and during weighing on the purity of commercial GRB1, with a purity value determined by qNMR, was examined. The results showed the importance afore-mentioned. The results of SSA, which is relatively unstable in the dissolved state, suggested that the standardization of humidity control before and during weighing for a specific time provides a practical approach for hygroscopic products. In regard to BB, its humidity control for a specific time, only before weighing, is enough for a reproducible purity determination.
Asunto(s)
Antracenos/análisis , Ginsenósidos/análisis , Higroscópicos/análisis , Ácido Oleanólico/análogos & derivados , Saponinas/análisis , Antracenos/normas , Ginsenósidos/normas , Humedad , Higroscópicos/normas , Japón , Espectroscopía de Resonancia Magnética/normas , Ácido Oleanólico/análisis , Ácido Oleanólico/normas , Saponinas/normasRESUMEN
Recently, quantitative NMR (qNMR), especially 1H-qNMR, has been widely used to determine the absolute quantitative value of organic molecules. We previously reported an optimal and reproducible sample preparation method for 1H-qNMR. In the present study, we focused on a 31P-qNMR absolute determination method. An organophosphorus compound, cyclophosphamide hydrate (CP), listed in the Japanese Pharmacopeia 17th edition was selected as the target compound, and the 31P-qNMR and 1H-qNMR results were compared under three conditions with potassium dihydrogen phosphate (KH2PO4) or O-phosphorylethanolamine (PEA) as the reference standard for 31P-qNMR and sodium 4,4-dimethyl-4-silapentanesulfonate-d6 (DSS-d6) as the standard for 1H-qNMR. Condition 1: separate sample containing CP and KH2PO4 for 31P-qNMR or CP and DSS-d6 for 1H-qNMR. Condition 2: mixed sample containing CP, DSS-d6, and KH2PO4. Condition 3: mixed sample containing CP, DSS-d6, and PEA. As conditions 1 and 3 provided good results, validation studies at multiple laboratories were further conducted. The purities of CP determined under condition 1 by 1H-qNMR at 11 laboratories and 31P-qNMR at 10 laboratories were 99.76 ± 0.43 and 99.75 ± 0.53%, respectively, and those determined under condition 3 at five laboratories were 99.66 ± 0.08 and 99.61 ± 0.53%, respectively. These data suggested that the CP purities determined by 31P-qNMR are in good agreement with those determined by the established 1H-qNMR method. Since the 31P-qNMR signals are less complicated than the 1H-qNMR signals, 31P-qNMR would be useful for the absolute quantification of compounds that do not have a simple and separate 1H-qNMR signal, such as a singlet or doublet, although further investigation with other compounds is needed.
Asunto(s)
Ciclofosfamida/análisis , Agua/análisis , Espectroscopía de Resonancia Magnética , Estructura Molecular , FósforoRESUMEN
Quantitative NMR (qNMR) is applied to determine the absolute quantitative value of analytical standards for HPLC-based quantification. We have previously reported the optimal and reproducible sample preparation method for qNMR of hygroscopic reagents, such as saikosaponin a, which is used as an analytical standard in the assay of crude drug section of Japanese Pharmacopoeia (JP). In this study, we examined the absolute purity determination of a hygroscopic substance, indocyanine green (ICG), listed in the Japanese Pharmaceutical Codex 2002, using qNMR for standardization by focusing on the adaptation of ICG to JP. The purity of ICG, as an official non-Pharmacopoeial reference standard (non-PRS), had high variation (86.12 ± 2.70%) when preparing qNMR samples under non-controlled humidity (a conventional method). Additionally, residual ethanol (0.26 ± 0.11%) was observed in the non-PRS ICG. Next, the purity of non-PRS ICG was determined via qNMR when preparing samples under controlled humidity using a saturated sodium bromide solution. The purity was 84.19 ± 0.47% with a lower variation than that under non-controlled humidity. Moreover, ethanol signal almost disappeared. We estimated that residual ethanol in non-PRS ICG was replaced with water under controlled humidity. Subsequently, qNMR analysis was performed when preparing samples under controlled humidity in a constant temperature and humidity box. It showed excellent results with the lowest variation (82.26 ± 0.19%). As the use of a constant temperature and humidity box resulted in the lowest variability, it is recommended to use the control box if the reference ICG standard is needed for JP assays.
Asunto(s)
Verde de Indocianina/análisis , Espectroscopía de Resonancia Magnética , Estructura Molecular , HumectabilidadRESUMEN
Termites (Blattodea, Termitoidea, or Isoptera) constitute one of the major lineages of eusocial insects. In termite societies, multiple types of functional individuals, that is, castes, perform divisions of labors to coordinate social behaviors. Among other castes, the soldier caste is distinctive since it is sterile and exclusively specialized into defensive behavior with largely modified morphological features. Therefore, many of the previous studies have been focused on soldiers, in terms of ecology, behavior, and evolution as well as developmental and physiological mechanisms. This article overviews the accumulation of studies especially focusing on the developmental and physiological mechanisms underlying the soldier differentiation in termites. Furthermore, the evolutionary trajectories that have led the acquisition of soldier caste and have diversified the soldier characteristics in association with the social evolution are discussed.