Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
Am J Hum Genet ; 111(3): 487-508, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38325380

RESUMEN

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Asunto(s)
Hiperparatiroidismo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Femenino , Animales , Humanos , Discapacidad Intelectual/patología , Pez Cebra/genética , Mutación Missense/genética , Factores de Transcripción/genética , Fenotipo , Trastornos del Neurodesarrollo/genética
2.
Am J Hum Genet ; 110(7): 1068-1085, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352860

RESUMEN

ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.


Asunto(s)
Exorribonucleasas , Histonas , Humanos , Exorribonucleasas/genética , Histonas/genética , Mutación Missense/genética , ARN Ribosómico 5.8S , ARN , ARN Mensajero/genética
3.
J Med Genet ; 61(6): 590-594, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38228391

RESUMEN

Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by (epi)genetic alterations at 11p15. Because approximately 20% of patients test negative via molecular testing of peripheral blood leukocytes, the concept of Beckwith-Wiedemann spectrum (BWSp) was established to encompass a broader cohort with diverse and overlapping phenotypes. The prevalence of other overgrowth syndromes concealed within molecularly negative BWSp remains unexplored. Methods We conducted whole-exome sequencing (WES) on 69 singleton patients exhibiting molecularly negative BWSp. Variants were confirmed by Sanger sequencing or quantitative genomic PCR. We compared BWSp scores and clinical features between groups with classical BWS (cBWS), atypical BWS or isolated lateralised overgrowth (aBWS+ILO) and overgrowth syndromes identified via WES. Results Ten patients, one classified as aBWS and nine as cBWS, showed causative gene variants for Simpson-Golabi-Behmel syndrome (five patients), Sotos syndrome (two), Imagawa-Matsumoto syndrome (one), glycosylphosphatidylinositol biosynthesis defect 11 (one) or 8q duplication/9p deletion (one). BWSp scores did not distinguish between cBWS and other overgrowth syndromes. Birth weight and height in other overgrowth syndromes were significantly larger than in aBWS+ILO and cBWS, with varying intergroup frequencies of clinical features. Conclusion Molecularly negative BWSp encapsulates other syndromes, and considering both WES and clinical features may facilitate accurate diagnosis.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Secuenciación del Exoma , Humanos , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patología , Síndrome de Beckwith-Wiedemann/diagnóstico , Masculino , Femenino , Lactante , Preescolar , Niño , Fenotipo , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/patología , Variación Genética , Mutación/genética
4.
J Hum Genet ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014191

RESUMEN

Camurati-Engelmann disease (CED) is an autosomal dominant bone dysplasia characterized by progressive hyperostosis of the skull base and diaphyses of the long bones. CED is further divided into two subtypes, CED1 and CED2, according to the presence or absence of TGFB1 mutations, respectively. In this study, we used exome sequencing to investigate the genetic cause of CED2 in three pedigrees and identified two de novo heterozygous mutations in TGFB2 among the three patients. Both mutations were located in the region of the gene encoding the straitjacket subdomain of the latency-associated peptide (LAP) of pro-TGF-ß2. Structural simulations of the mutant LAPs suggested that the mutations could cause significant conformational changes and lead to a reduction in TGF-ß2 inactivation. An activity assay confirmed a significant increase in TGF-ß2/SMAD signaling. In vitro osteogenic differentiation experiment using iPS cells from one of the CED2 patients showed significantly enhanced ossification, suggesting that the pathogenic mechanism of CED2 is increased activation of TGF-ß2 by loss-of-function of the LAP. These results, in combination with the difference in hyperostosis patterns between CED1 and CED2, suggest distinct functions between TGFB1 and TGFB2 in human skeletal development and homeostasis.

5.
Clin Genet ; 105(1): 72-76, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526414

RESUMEN

KDM4B (MIM*609765, NM_015015.3, formerly JMJD2B) encodes a histone demethylase and regulates gene expression via demethylation, mainly of H3K9 tri-methylation. Heterozygous KDM4B loss-of-function variants cause autosomal dominant intellectual developmental disorder 65 (MIM#619320), which is characterized by global developmental delay, intellectual disability, language and gross motor delays, structural brain anomalies, characteristic facial features, and clinodactyly. Although the majority of reported patients have de novo pathogenic variants, some patients inherit pathogenic variants from affected parents. To our knowledge, only 23 patients with heterozygous KDM4B variants have been reported to date, and there are no reports of patients with biallelic KDM4B pathogenic variants. Herein, we report a female patient with a biallelic KDM4B frameshift variant (NM_015015.3: c.1384_1394delinsGGG, p.(Leu462Glyfs*43)) located at exon 12 of 23 protein-coding exons, which is thought to be subject to nonsense-mediated mRNA decay and no protein production. She presented developmental and language delays and a hypotonic and characteristic face. The patient's phenotype was more obvious than that of her mother, who is heterozygous for the same variant. Although declining birth rate (embryonic lethality in male mice) in homozygous knockout mice has been demonstrated, our report suggests that homozygous KDM4B frameshift variants can be viable in humans at least female.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Humanos , Masculino , Femenino , Animales , Ratones , Mutación del Sistema de Lectura/genética , Exones , Fenotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/genética , Histona Demetilasas con Dominio de Jumonji/genética
6.
Am J Med Genet A ; 194(2): 268-278, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37815018

RESUMEN

Kabuki syndrome (KS) is characterized by growth impairment, psychomotor delay, congenital heart disease, and distinctive facial features. KMT2D and KDM6A have been identified as the causative genes of KS. Craniosynostosis (CS) has been reported in individuals with KS; however, its prevalence and clinical implications remain unclear. In this retrospective study, we investigated the occurrence of CS in individuals with genetically diagnosed KS and examined its clinical significance. Among 42 individuals with genetically diagnosed KS, 21 (50%) exhibited CS, with 10 individuals requiring cranioplasty. No significant differences were observed based on sex, causative gene, and molecular consequence among individuals with KS who exhibited CS. Both individuals who underwent evaluation with three-dimensional computed tomography (3DCT) and those who required surgery tended to exhibit cranial dysmorphology. Notably, in several individuals, CS was diagnosed before KS, suggesting that CS could be one of the clinical features by which clinicians can diagnose KS. This study highlights that CS is one of the noteworthy complications in KS, emphasizing the importance of monitoring cranial deformities in the health management of individuals with KS. The findings suggest that in individuals where CS is a concern, conducting 3DCT evaluations for CS and digital impressions are crucial.


Asunto(s)
Anomalías Múltiples , Craneosinostosis , Cara/anomalías , Enfermedades Hematológicas , Enfermedades Vestibulares , Humanos , Estudios Retrospectivos , Prevalencia , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/epidemiología , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/epidemiología , Enfermedades Vestibulares/genética , Craneosinostosis/complicaciones , Craneosinostosis/diagnóstico , Craneosinostosis/epidemiología , Histona Demetilasas/genética , Mutación
7.
BMC Neurol ; 24(1): 119, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605286

RESUMEN

BACKGROUND: Ischemic stroke in young adults can be caused by a variety of etiologies including the monogenic disorders. Visceral heterotaxy is a condition caused by abnormal left-right determinations during embryonic development. We aimed to determine the cause of a young ischemic stroke patient with visceral heterotaxy. CASE PRESENTATION: We performed neurological, radiological, and genetic evaluations in a 17-year-old male patient presenting ischemic stroke and visceral heterotaxy to determine the underlying cause of this rare disease combination. Brain magnetic resonance imaging (MRI) showed evidence of embolic stroke, abdominal computed tomography (CT) showed visceral heterotaxy, and echocardiogram showed cardiac anomaly with right-to-left-shunt (RLS). Whole genome sequencing (WGS) revealed a heterozygous missense variant (NM_018055.5: c.1016 T > C, p.(Met339Val)) in the NODAL gene, which is essential to the determination of the left-right body axis. CONCLUSIONS: Our study highlights the importance of evaluating genetic etiology in young ischemic stroke and the need for stroke risk management in visceral heterotaxy patients with RLS. To the best of our knowledge, we report the first genetically-confirmed case of visceral heterotaxy with young embolic stroke reported to date.


Asunto(s)
Accidente Cerebrovascular Embólico , Síndrome de Heterotaxia , Adolescente , Humanos , Masculino , Anomalías Cardiovasculares , Síndrome de Heterotaxia/genética , Imagen por Resonancia Magnética , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/genética
8.
Exp Cell Res ; 424(1): 113503, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731710

RESUMEN

Most lung adenocarcinoma-associated EGFR tyrosine kinase mutations are either an exon 19 deletion (19Del) or L858R point mutation in exon 21. Although patients whose tumors contain either of these mutations exhibit increased sensitivity to tyrosine kinase inhibitors, progression-free and overall survival appear to be longer in patients with 19Del than in those with L858R. In mutant-transfected Ba/F3 cells, 19Del and L858R were compared by multi-omics analyses including proteomics, transcriptomics, and metabolomics. Proteome analysis identified increased plastin-2, TKT, PDIA5, and ENO1 expression in L858R cells, and increased EEF1G expression in 19Del cells. RNA sequencing showed significant differences between 19Del and L858R cells in 112 genes. Metabolome analysis showed that amino acids, adenylate, guanylate, NADPH, lactic acid, pyruvic acid glucose 6-phosphate, and ribose 5-phosphate were significantly different between the two mutant cells. Because GSH was increased with L858R, we combined osimertinib with the GSH inhibitor buthionine sulfoximine in L858R cells and observed synergistic effects. The complexity of EGFR 19Del and L858R mutant cells was demonstrated by proteomics, transcriptomics, and metabolomics analyses. Therapeutic strategies for lung cancer with different EGFR mutations could be considered because of their different metabolic phenotypes.


Asunto(s)
Neoplasias Pulmonares , Proteómica , Humanos , Transcriptoma , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación/genética , Exones , Inhibidores de Proteínas Quinasas/farmacología
9.
Neuropathology ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014877

RESUMEN

Dystrophinopathy is caused by alterations in the dystrophin gene. The severe phenotype, Duchenne muscular dystrophy (DMD), is caused by a lack of dystrophin in skeletal muscles, resulting in necrosis and regenerating fibers, inflammatory cells, and muscle fibrosis. Progressive muscle weakness is a characteristic finding of this condition. Here, we encountered a rare case of a 10-year-old patient with asymptomatic dystrophinopathy with no dystrophin expression and investigated the reason for the absence of muscle weakness to obtain therapeutic insights for DMD. Using RNA-seq analysis, gene expression in skeletal muscles was compared among patients with asymptomatic dystrophinopathy, three patients with typical DMD, and two patients without dystrophinopathy who were leading normal daily lives. Cathepsin K (CTSK), myosin heavy chain 3 (MYH3), and nodal modulator 3-like genes exhibited a >8-fold change, whereas crystallin mu gene (CRYM) showed a <1/8-fold change in patients with typical DMD compared with their expression in the patient with asymptomatic dystrophinopathy. Additionally, CTSK and MYH3 expression exhibited a >16-fold change (P < 0.01), whereas CRYM expression showed a <1/16-fold change (P < 0.01) in patients with typical DMD compared with their expression in those without dystrophinopathy. CTSK plays an essential role in skeletal muscle loss, fibrosis, and inflammation in response to muscles injected with cardiotoxin, one of the most common reagents that induce muscle injury. Increased CTSK expression is associated with muscle injury or necrosis in patients with DMD. The lack of muscle weakness in the patient with asymptomatic dystrophinopathy might be attributed to the low CTSK expression in the muscles. To the best of our knowledge, this is the first report to demonstrate that CTSK expression was significantly higher in the skeletal muscles of patients with DMD with a typical phenotype than in those without dystrophinopathy.

10.
Pediatr Int ; 66(1): e15760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38641939

RESUMEN

Diseases are caused by genetic and/or environmental factors. It is important to understand the pathomechanism of monogenic diseases that are caused only by genetic factors, especially prenatal- or childhood-onset diseases for pediatricians. Identifying "novel" disease genes and elucidating how genomic changes lead to human phenotypes would develop new therapeutic approaches for rare diseases for which no fundamental cure has yet been established. Genomic analysis has evolved along with the development of analytical techniques, from Sanger sequencing (first-generation sequencing) to techniques such as comparative genomic hybridization, massive parallel short-read sequencing (using a next-generation sequencer or second-generation sequencer) and long-read sequencing (using a next-next generation sequencer or third-generation sequencer). I have been researching human genetics using conventional and new technologies, together with my mentors and numerous collaborators, and have identified genes responsible for more than 60 diseases. Here, an overview of genomic analyses of monogenic diseases that aims to identify novel disease genes, and several examples using different approaches depending on the disease characteristics are presented.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Niño , Hibridación Genómica Comparativa , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
11.
Hum Mol Genet ; 31(1): 69-81, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34346499

RESUMEN

An optimal Golgi transport system is important for mammalian cells. The adenosine diphosphate (ADP) ribosylation factors (ARF) are key proteins for regulating cargo sorting at the Golgi network. In this family, ARF3 mainly works at the trans-Golgi network (TGN), and no ARF3-related phenotypes have yet been described in humans. We here report the clinical and genetic evaluations of two unrelated children with de novo pathogenic variants in the ARF3 gene: c.200A > T (p.Asp67Val) and c.296G > T (p.Arg99Leu). Although the affected individuals presented commonly with developmental delay, epilepsy and brain abnormalities, there were differences in severity, clinical course and brain lesions. In vitro subcellular localization assays revealed that the p.Arg99Leu mutant localized to Golgi apparatus, similar to the wild-type, whereas the p.Asp67Val mutant tended to show a disperse cytosolic pattern together with abnormally dispersed Golgi localization, similar to that observed in a known dominant negative variant (p.Thr31Asn). Pull-down assays revealed that the p.Asp67Val had a loss-of-function effect and the p.Arg99Leu variant had increased binding of the adaptor protein, Golgi-localized, γ-adaptin ear-containing, ARF-binding protein 1 (GGA1), supporting the gain of function. Furthermore, in vivo studies revealed that p.Asp67Val transfection led to lethality in flies. In contrast, flies expressing p.Arg99Leu had abnormal rough eye, as observed in the gain-of-function variant p.Gln71Leu. These data indicate that two ARF3 variants, the possibly loss-of-function p.Asp67Val and the gain-of-function p.Arg99Leu, both impair the Golgi transport system. Therefore, it may not be unreasonable that they showed different clinical features like diffuse brain atrophy (p.Asp67Val) and cerebellar hypoplasia (p.Arg99Leu).


Asunto(s)
Factores de Ribosilacion-ADP , Trastornos del Neurodesarrollo , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Encéfalo/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Mamíferos/metabolismo , Trastornos del Neurodesarrollo/metabolismo
12.
Am J Hum Genet ; 106(1): 13-25, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31839203

RESUMEN

MN1 was originally identified as a tumor-suppressor gene. Knockout mouse studies have suggested that Mn1 is associated with craniofacial development. However, no MN1-related phenotypes have been established in humans. Here, we report on three individuals who have de novo MN1 variants that lead to a protein lacking the carboxyl (C) terminus and who presented with severe developmental delay, craniofacial abnormalities with specific facial features, and structural abnormalities in the brain. An in vitro study revealed that the deletion of the C-terminal region led to increased protein stability, an inhibitory effect on cell proliferation, and enhanced MN1 aggregation in nuclei compared to what occurred in the wild type, suggesting that a gain-of-function mechanism is involved in this disease. Considering that C-terminal deletion increases the fraction of intrinsically disordered regions of MN1, it is possible that altered phase separation could be involved in the mechanism underlying the disease. Our data indicate that MN1 participates in transcriptional regulation of target genes through interaction with the transcription factors PBX1, PKNOX1, and ZBTB24 and that mutant MN1 impairs the binding with ZBTB24 and RING1, which is an E3 ubiquitin ligase. On the basis of our findings, we propose the model that C-terminal deletion interferes with MN1's interaction molecules related to the ubiquitin-mediated proteasome pathway, including RING1, and increases the amount of the mutant protein; this increase leads to the dysregulation of MN1 target genes by inhibiting rapid MN1 protein turnover.


Asunto(s)
Encefalopatías/etiología , Anomalías Craneofaciales/etiología , Mutación con Ganancia de Función , Regulación de la Expresión Génica , Eliminación de Secuencia , Transactivadores/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Encefalopatías/patología , Proliferación Celular , Niño , Preescolar , Anomalías Craneofaciales/patología , Femenino , Células HeLa , Humanos , Masculino , Proteolisis , Síndrome , Transactivadores/metabolismo , Transcriptoma , Proteínas Supresoras de Tumor/metabolismo
13.
Am J Hum Genet ; 106(4): 549-558, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32169168

RESUMEN

De novo variants (DNVs) cause many genetic diseases. When DNVs are examined in the whole coding regions of genes in next-generation sequencing analyses, pathogenic DNVs often cluster in a specific region. One such region is the last exon and the last 50 bp of the penultimate exon, where truncating DNVs cause escape from nonsense-mediated mRNA decay [NMD(-) region]. Such variants can have dominant-negative or gain-of-function effects. Here, we first developed a resource of rates of truncating DNVs in NMD(-) regions under the null model of DNVs. Utilizing this resource, we performed enrichment analysis of truncating DNVs in NMD(-) regions in 346 developmental and epileptic encephalopathy (DEE) trios. We observed statistically significant enrichment of truncating DNVs in semaphorin 6B (SEMA6B) (p value: 2.8 × 10-8; exome-wide threshold: 2.5 × 10-6). The initial analysis of the 346 individuals and additional screening of 1,406 and 4,293 independent individuals affected by DEE and developmental disorders collectively identified four truncating DNVs in the SEMA6B NMD(-) region in five individuals who came from unrelated families (p value: 1.9 × 10-13) and consistently showed progressive myoclonic epilepsy. RNA analysis of lymphoblastoid cells established from an affected individual showed that the mutant allele escaped NMD, indicating stable production of the truncated protein. Importantly, heterozygous truncating variants in the NMD(+) region of SEMA6B are observed in general populations, and SEMA6B is most likely loss-of-function tolerant. Zebrafish expressing truncating variants in the NMD(-) region of SEMA6B orthologs displayed defective development of brain neurons and enhanced pentylenetetrazole-induced seizure behavior. In summary, we show that truncating DNVs in the final exon of SEMA6B cause progressive myoclonic epilepsy.


Asunto(s)
Exoma/genética , Exones/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Epilepsias Mioclónicas Progresivas/genética , Semaforinas/genética , Adolescente , Adulto , Alelos , Animales , Femenino , Heterocigoto , Humanos , Masculino , Degradación de ARNm Mediada por Codón sin Sentido/genética , Convulsiones/genética , Adulto Joven , Pez Cebra/genética
14.
Clin Genet ; 103(5): 590-595, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36576140

RESUMEN

AFF3 at 2q11.2 encodes the nuclear transcriptional activator AF4/FMR2 Family Member 3. AFF3 constitutes super elongation complex like 3, which plays a role in promoting the expression of genes involved in neurogenesis and development. The degron motif in AFF3 with nine highly conserved amino acids is recognized by E3 ubiquitin ligase to induce protein degradation. Recently, AFF3 missense variants in this region and variants featuring deletion including this region were identified and shown to cause KINSSHIP syndrome. In this study, we identified two novel and one previously reported missense variants in the degron of AFF3 in three unrelated Japanese patients. Notably, two of these three variants exhibited mosaicism in the examined tissues. This study suggests that mosaic variants also cause KINSSHIP syndrome, showing various phenotypes.


Asunto(s)
Células Germinativas , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Fenotipo , Proteínas Nucleares
15.
Hum Genomics ; 16(1): 46, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271469

RESUMEN

BACKGROUND: Ligation of CD28 with ligands such as CD80 or CD86 provides a critical second signal alongside antigen presentation by class II major histocompatibility complex expressed on antigen-presenting cells through the T cell antigen receptor for naïve T cell activation. A number of studies suggested that CD28 plays an important role in the pathogenesis of various human diseases. Recent genome-wide association studies (GWASs) identified CD28 as a susceptibility locus for lymphocyte and eosinophil counts, multiple sclerosis, ulcerative colitis, celiac disease, rheumatoid arthritis, asthma, and primary biliary cholangitis. However, the primary functional variant and molecular mechanisms of disease susceptibility in this locus remain to be elucidated. This study aimed to identify the primary functional variant from thousands of genetic variants in the CD28 locus and elucidate its functional effect on the CD28 molecule. RESULTS: Among the genetic variants exhibiting stronger linkage disequilibrium (LD) with all GWAS-lead variants in the CD28 locus, rs2013278, located in the Rbfox binding motif related to splicing regulation, was identified as a primary functional variant related to multiple immunological traits. Relative endogenous expression levels of CD28 splicing isoforms (CD28i and CD28Δex2) compared with full-length CD28 in allele knock-in cell lines generated using CRISPR/Cas9 were directly regulated by rs2013278 (P < 0.05). Although full-length CD28 protein expressed on Jurkat T cells showed higher binding affinity for CD80/CD86, both CD28i and CD28Δex2 encoded loss-of-function isoforms. CONCLUSION: The present study demonstrated for the first time that CD28 has a shared disease-related primary functional variant (i.e., rs2013278) that regulates the CD28 alternative splicing that generates loss-of-function isoforms. They reduce disease risk by inducing anergy of effector T cells that over-react to autoantigens and allergens.


Asunto(s)
Antígenos CD28 , Estudio de Asociación del Genoma Completo , Humanos , Antígenos CD28/genética , Antígenos CD28/metabolismo , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Isoformas de Proteínas/genética , Autoantígenos
16.
Med Mycol ; 61(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37312399

RESUMEN

Breakthrough candidemia (BrC) is a significant problem in immunocompromised patients, particularly those with hematological disorders. To assess the characteristics of BrC in patients with hematologic disease treated with novel antifungal agents, we collected clinical and microbiological information on said patients from 2009 to 2020 in our institution. Forty cases were identified, of which 29 (72.5%) received hematopoietic stem cell transplant (HSCT)-related therapy. At BrC onset, the most administered class of antifungal agents were echinocandins, administered to 70% of patients. Candida guilliermondii complex was the most frequently isolated species (32.5%), followed by C. parapsilosis (30%). These two isolates were echinocandin-susceptible in vitro but had naturally occurring FKS gene polymorphisms that reduced echinocandin susceptibility. Frequent isolation of these echinocandin-reduced-susceptible strains in BrC may be associated with the widespread use of echinocandins. In this study, the 30-day crude mortality rate in the group receiving HSCT-related therapy was significantly higher than in the group not receiving it (55.2% versus 18.2%, P = .0297). Most patients affected by C. guilliermondii complex BrC (92.3%) received HSCT-related therapy and had a 30-day mortality rate of 53.8%; despite treatment administration, 3 of 13 patients had persistent candidemia. Based on our results, C. guilliermondii complex BrC is a potentially fatal condition in patients receiving HSCT-related therapy with echinocandin administration.


This retrospective study was conducted at a Japanese center specializing in hematopoietic stem cell transplants and found that the rare pathogen Candida guilliermondii complex was the most common cause of breakthrough candidemia, with high mortality rate, which is a concern for transplant patients.


Asunto(s)
Candidemia , Enfermedades Hematológicas , Animales , Candidemia/tratamiento farmacológico , Candidemia/epidemiología , Candidemia/microbiología , Candidemia/veterinaria , Antifúngicos/uso terapéutico , Estudios Retrospectivos , Candida , Japón/epidemiología , Equinocandinas/uso terapéutico , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/veterinaria , Pruebas de Sensibilidad Microbiana/veterinaria
17.
Brain ; 145(3): 1139-1150, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35355059

RESUMEN

Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) is a late-onset, slow-progressing multisystem neurodegenerative disorder. Biallelic AAGGG repeat expansion in RFC1 has been identified as causative of this disease, and repeat conformation heterogeneity (ACAGG repeat) was also recently implied. To molecularly characterize this disease in Japanese patients with adult-onset ataxia, we accumulated and screened 212 candidate families by an integrated approach consisting of flanking PCR, repeat-primed PCR, Southern blotting and long-read sequencing using Sequel II, GridION or PromethION. We identified 16 patients from 11 families, of whom seven had ACAGG expansions [(ACAGG)exp/(ACAGG)exp] (ACAGG homozygotes), two had ACAGG and AAGGG expansions [(ACAGG)exp/(AAGGG)exp] (ACAGG/AAGGG compound heterozygotes) and seven had AAGGG expansions [(AAGGG)exp/(AAGGG)exp] (AAGGG homozygotes). The overall detection rate was 5.2% (11/212 families including one family having two expansion genotypes). Long-read sequencers revealed the entire sequence of both AAGGG and ACAGG repeat expansions at the nucleotide level of resolution. Clinical assessment and neuropathology results suggested that patients with ACAGG expansions have similar clinical features to previously reported patients with homozygous AAGGG expansions, although motor neuron involvement was more notable in patients with ACAGG expansions (even if one allele was involved). Furthermore, a later age of onset and slower clinical progression were implied in patients with ACAGG/AAGGG compound heterozygous expansions compared with either ACAGG or AAGGG homozygotes in our very limited cohort. Our study clearly shows the occurrence of repeat conformation heterogeneity, with possible different impacts on the affected nervous systems. The difference in disease onset and progression between compound heterozygotes and homozygotes might also be suspected but with very limited certainty due to the small sample number of cases in our study. Studies of additional patients are needed to confirm this.


Asunto(s)
Vestibulopatía Bilateral , Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Enfermedades Vestibulares , Neuronitis Vestibular , Adulto , Ataxia , Vestibulopatía Bilateral/diagnóstico , Vestibulopatía Bilateral/genética , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Humanos , Reflejo Anormal , Proteína de Replicación C/genética , Síndrome , Enfermedades Vestibulares/genética
18.
J Med Genet ; 59(5): 511-516, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34183358

RESUMEN

PURPOSE: Binding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gßγ units. Human diseases have been reported for all five Gß proteins. A de novo missense variant in GNB2 was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm GNB2 as a neurodevelopmental disease gene, and elucidate the GNB2-associated neurodevelopmental phenotype in a patient cohort. METHODS: We discovered a GNB2 variant in the index case via exome sequencing and sought individuals with GNB2 variants via international data-sharing initiatives. In silico modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants. RESULTS: We identified 12 unrelated individuals with five de novo missense variants in GNB2, four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction. CONCLUSION: Missense variants in GNB2 cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteínas de Unión al GTP/genética , Humanos , Discapacidad Intelectual/genética , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Secuenciación del Exoma
19.
J Med Genet ; 59(9): 865-877, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34815299

RESUMEN

BACKGROUND: Musculocontractural Ehlers-Danlos syndrome is caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE). Although 48 patients in 33 families with mcEDS-CHST14 have been reported, the spectrum of pathogenic variants, accurate prevalence of various manifestations and detailed natural history have not been systematically investigated. METHODS: We collected detailed and comprehensive clinical and molecular information regarding previously reported and newly identified patients with mcEDS-CHST14 through international collaborations. RESULTS: Sixty-six patients in 48 families (33 males/females; 0-59 years), including 18 newly reported patients, were evaluated. Japanese was the predominant ethnicity (27 families), associated with three recurrent variants. No apparent genotype-phenotype correlation was noted. Specific craniofacial (large fontanelle with delayed closure, downslanting palpebral fissures and hypertelorism), skeletal (characteristic finger morphologies, joint hypermobility, multiple congenital contractures, progressive talipes deformities and recurrent joint dislocation), cutaneous (hyperextensibility, fine/acrogeria-like/wrinkling palmar creases and bruisability) and ocular (refractive errors) features were observed in most patients (>90%). Large subcutaneous haematomas, constipation, cryptorchidism, hypotonia and motor developmental delay were also common (>80%). Median ages at the initial episode of dislocation or large subcutaneous haematoma were both 6 years. Nine patients died; their median age was 12 years. Several features, including joint and skin characteristics (hypermobility/extensibility and fragility), were significantly more frequent in patients with mcEDS-CHST14 than in eight reported patients with mcEDS-DSE. CONCLUSION: This first international collaborative study of mcEDS-CHST14 demonstrated that the subtype represents a multisystem disorder with unique set of clinical phenotypes consisting of multiple malformations and progressive fragility-related manifestations; these require lifelong, multidisciplinary healthcare approaches.


Asunto(s)
Anomalías Múltiples , Síndrome de Ehlers-Danlos , Anomalías Múltiples/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Fenotipo , Sulfotransferasas/genética
20.
Hum Genet ; 141(11): 1771-1784, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35503477

RESUMEN

Pigmentary mosaicism of the Ito type, also known as hypomelanosis of Ito, is a neurocutaneous syndrome considered to be predominantly caused by somatic chromosomal mosaicism. However, a few monogenic causes of pigmentary mosaicism have been recently reported. Eleven unrelated individuals with pigmentary mosaicism (mostly hypopigmented skin) were recruited for this study. Skin punch biopsies of the probands and trio-based blood samples (from probands and both biological parents) were collected, and genomic DNA was extracted and analyzed by exome sequencing. In all patients, plausible monogenic causes were detected with somatic and germline variants identified in five and six patients, respectively. Among the somatic variants, four patients had MTOR variant (36%) and another had an RHOA variant. De novo germline variants in USP9X, TFE3, and KCNQ5 were detected in two, one, and one patients, respectively. A maternally inherited PHF6 variant was detected in one patient with hyperpigmented skin. Compound heterozygous GTF3C5 variants were highlighted as strong candidates in the remaining patient. Exome sequencing, using patients' blood and skin samples is highly recommended as the first choice for detecting causative genetic variants of pigmentary mosaicism.


Asunto(s)
Hipopigmentación , Mosaicismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Humanos , Hipopigmentación/genética , Serina-Treonina Quinasas TOR/genética , Ubiquitina Tiolesterasa/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda