Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Eur J Clin Pharmacol ; 79(3): 407-414, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36645467

RESUMEN

PURPOSE: Chemotherapy-induced neutropenia (CIN) is a dose-limiting factor for cytotoxic chemotherapy, but recently, it was suggested that CIN contributes to prolonged survival. In this study, we examined the association between severe CIN and survival and determined whether CIN affected survival in patients with extensive-stage small cell lung cancer (ES-SCLC). METHODS: The medical records from 214 patients with ES-SCLC treated with etoposide or irinotecan in combination with cisplatin (EP/IP) between 2012 and 2016 were collected and retrospectively analyzed. Landmark analysis was performed at the end of cycle 4, and the relationship between severe CIN and survival was determined by a log-rank test. In addition, a multivariate analysis using the COX proportional hazard model was performed to identify independent predictive factors. The Landmark analysis included 102 patients in the IP group and 47 patients in the EP group. RESULTS: No significant difference was found between grades 0-3 and grade 4 neutropenia and overall survival (OS) in the EP group (P = 0.57). Contrariwise, for the IP patients, the median OS was 444 days for grades 0-3 and 633 days for grade 4 neutropenia, which was significantly longer for patients who developed grade 4 neutropenia (P = 0.03). Multivariate analysis adjusted for potential factors revealed that the development of grade 4 CIN was identified as a significant predictor of longer OS (hazard ratio [HR], 0.50; 95% confidence interval (CI), 0.28-0.87, P = 0.015). CONCLUSION: The results indicated that the development of severe CIN with IP therapy is associated with prolonged OS.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Neutropenia , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Pronóstico , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neutropenia/inducido químicamente , Cisplatino/efectos adversos , Antineoplásicos/uso terapéutico
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675113

RESUMEN

Both astrocytic and microglial functions have been extensively investigated in healthy subjects and neurodegenerative diseases. For astrocytes, not only various sub-types were identified but phagocytic activity was also clarified recently and is making dramatic progress. In this review paper, we mostly focus on the functional role of astrocytes in the extracellular matrix and on interactions between reactive astrocytes and reactive microglia in normal states and in neurodegenerative diseases, because the authors feel it is necessary to elucidate the mechanisms among activated glial cells in the pathology of neurological diseases in order to pave the way for drug discovery. Finally, we will review cyclic phosphatidic acid (cPA), a naturally occurring phospholipid mediator that induces a variety of biological activities in the brain both in vivo and in vitro. We propose that cPA may serve as a novel therapeutic molecule for the treatment of brain injury and neuroinflammation.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Humanos , Microglía/patología , Astrocitos/patología , Enfermedades Neurodegenerativas/patología , Sistema Nervioso Central , Neuroglía , Ácidos Fosfatidicos
3.
Physiol Genomics ; 54(3): 99-114, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100063

RESUMEN

Estrogen plays a role in cardiovascular functions, emotional health, and energy homeostasis via estrogen receptors expressed in the brain. The comorbid relationship between rising blood pressure, a decline in mood and motivation, and body weight gain after menopause, when estrogen levels drop, suggests that the same brain area(s) contributes to protection from all of these postmenopausal disorders. The amygdala, a major limbic system nuclear complex known to express high estrogen receptor levels, is involved in the regulation of such physiological and psychological responses. We hypothesized that elevated estrogen levels contribute to premenopausal characteristics by activating specific genes and pathways in the amygdala. We examined the effect of 1 mo of estradiol treatment on the gene expression profile in the amygdala of ovariectomized young adult female spontaneously hypertensive rats. Estradiol substitution significantly decreased blood pressure, prevented body weight gain, and enhanced the voluntary physical activity of ovariectomized rats. In the amygdala of ovariectomized rats, estradiol treatment downregulated the expression of genes associated with estrogen signaling, cholinergic synapse, dopaminergic synapse, and long-term depression pathways. These findings indicate that the transcriptomic characteristics of the amygdala may be involved in estrogen-dependent regulation of blood pressure, physical activity motivation, and body weight control in young adult female spontaneously hypertensive rats.


Asunto(s)
Estradiol , Transcriptoma , Amígdala del Cerebelo/metabolismo , Animales , Peso Corporal , Estradiol/farmacología , Estrógenos/metabolismo , Femenino , Humanos , Ovariectomía , Ratas , Ratas Endogámicas SHR , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transcriptoma/genética
4.
Int J Exp Pathol ; 100(2): 72-82, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30887659

RESUMEN

Vitronectin (VN), an extracellular matrix protein, is a promising immune biomarker of non-alcoholic steatohepatitis (NASH); however, its precise function remains unclear. This study investigated how VN deficiency contributes to the development of NASH. Towards this aim, wild-type (WT) and VN-/- mice were fed with a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 6 and 10 weeks to induce NASH, and the livers were isolated. In WT mice fed with CDAHFD for 6 and 10 weeks, the expression of Vn mRNA and protein was up-regulated compared with that in mice fed with the MF control diet, indicating that VN is regulated in NASH condition. VN-/- mice showed decreased picrosirius red staining in the liver area and Col1a2 mRNA expression levels, compared with WT mice, indicating that the severity of hepatic fibrosis is attenuated in the CDAHFD-fed VN-/- mice. In addition, VN deficiency did not affect the area of lipid droplets in haematoxylin-eosin staining and the mRNA expression levels of fatty acid synthases, Srebp, Acc and Fas in the CDAHFD-fed mice. Moreover, VN deficiency decreased the inflammation score and the mRNA expression levels of Cd11b and F4/80, macrophage markers, as well as Tnf-α and Il-1ß, inflammatory cytokines in the CDAHFD-fed mice. Furthermore, VN deficiency decreased the protein and mRNA expression levels of α-smooth muscle actin in the CDAHFD-fed mice, suggesting that VN deficiency inhibits the activation of hepatic stellate cells (HSCs). Our findings indicate that VN contributes to the development of fibrosis in the NASH model mice via modulation of the inflammatory reaction and activation of HSCs.


Asunto(s)
Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Vitronectina/fisiología , Animales , Deficiencia de Colina/complicaciones , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/fisiología , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/patología , ARN Mensajero/genética , Vitronectina/deficiencia , Vitronectina/genética
5.
Neurochem Res ; 44(7): 1621-1635, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30937689

RESUMEN

Vitronectin (Vtn), one of the extracellular matrix proteins, has been reported to result in cell cycle exit, neurite formation, and polarization of neural progenitor cells during neurogenesis. The underlying mechanism, however, has not been fully understood. In this study, we investigated the roles of Vtn and its integrin receptors, during the transition of neurites from multipolar to bipolar morphology, accompanying the cell cycle exit in neural progenitor cells. We used mouse neuroblastoma cell line Neuro2a as a model of neural progenitor cells which can induce cell cycle exit and the morphological transition of neurites by retinoic acid (RA)-stimulation. Treatment with an antibody for Vtn suppressed the RA-induced cell cycle exit and multipolar-to-bipolar transition. Furthermore, immunostaining results showed that in the cells displaying multipolar morphology Vtn was partially localized at the tips of neurites and in cells displaying bipolar morphology at both tips. This Vtn localization and multipolar-to-bipolar transition was perturbed by the transfection of a dominant negative mutant of cell polarity regulator Par6. In addition, a knockdown of ß5 integrin, which is a receptor candidate for Vtn, affected the multipolar-to-bipolar transition. Taken together, these results suggest that Vtn regulates the multipolar-to-bipolar morphological transition via αvß5 integrin.


Asunto(s)
Neuritas/fisiología , Neurogénesis/fisiología , Vitronectina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Anticuerpos/inmunología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Integrina alfaVbeta3/metabolismo , Cadenas beta de Integrinas/genética , Integrina beta3/genética , Ratones , Neurogénesis/efectos de los fármacos , Receptores de Vitronectina/metabolismo , Tretinoina/farmacología , Regulación hacia Arriba , Vitronectina/antagonistas & inhibidores , Vitronectina/genética , Vitronectina/inmunología
6.
Exp Cell Res ; 363(1): 102-113, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29291401

RESUMEN

Patients with tenascin-X (TNX)-deficient type Ehlers-Danlos syndrome (EDS) do not exhibit delayed wound healing, unlike classic type EDS patients, who exhibit mutations in collagen genes. Similarly, in TNX-knockout (KO) mice, wound closure of the skin is normal even though these mice exhibit a reduced breaking strength. Therefore, we speculated that the wound healing process may be affected in the absence of TNX. In this study, to investigate the effects of TNX absence on wound healing-related properties, we performed collagen gel contraction assays with wild-type (WT) and TNX-KO mouse embryonic fibroblasts (MEFs). Collagen gels with embedded TNX-KO MEFs showed significantly greater contraction than those containing WT MEFs. Subsequently, we assessed collagen gel contraction-related properties, such as the activities of matrix metalloproteinase (MMP)-2 and MMP-9 and the protein and mRNA expression levels of transforming growth factor ß1 (TGF-ß1) in the collagen gels. The activities of MMP-2 and MMP-9 and the expression level of TGF-ß1 were elevated in the absence of TNX. Furthermore, filopodia-like protrusion formation, cell proliferation, migration, and collagen expression in MEFs were promoted in the absence of TNX. These results indicate that these wound healing-related properties are affected in a TNX-deficient extracellular environment.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/metabolismo , Tenascina/deficiencia , Cicatrización de Heridas/fisiología , Animales , Células Cultivadas , Proteínas de la Matriz Extracelular/metabolismo , Ratones Endogámicos C57BL , Modelos Teóricos , Proteínas del Tejido Nervioso/metabolismo , Piel/metabolismo , Tenascina/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
7.
Cell Mol Life Sci ; 75(8): 1363-1376, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29218601

RESUMEN

Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Neoplasias Hematológicas/inmunología , Malaria/inmunología , Mielopoyesis/inmunología , Neutrófilos/inmunología , Animales , Ciclo Celular/genética , Ciclo Celular/inmunología , Diferenciación Celular , Proliferación Celular , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/inmunología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Humanos , Interferones/genética , Interferones/inmunología , Interleucina-1/genética , Interleucina-1/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Interleucinas/genética , Interleucinas/inmunología , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/inmunología , Malaria/genética , Malaria/parasitología , Malaria/patología , Ratones , Células Progenitoras Mieloides/inmunología , Células Progenitoras Mieloides/parasitología , Células Progenitoras Mieloides/patología , Mielopoyesis/genética , Neutrófilos/parasitología , Neutrófilos/patología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/inmunología
8.
BMC Nephrol ; 20(1): 123, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30961527

RESUMEN

BACKGROUND: Thymic hyperplasia and thymic epithelial tumor (thymoma) have been associated with a variety of autoimmune diseases. Renal involvement has been reported in patients with thymoma. Minimal change disease and membranous nephropathy are frequently observed in glomerular lesions of thymoma patients, but ANCA-associated renal vasculitis is rare. We present a case of thymoma-associated microscopic polyangiitis with positivity for three ANCAs: MPO-ANCA, PR3-ANCA and azurocidin-ANCA. CASE PRESENTATION: An 89-year-old Japanese woman was admitted to our hospital following an episode of general fatigue, nausea, muscle weakness of the lower limbs, and ophthalmoplegia. On urinalysis, proteinuria, hematuria, and cellular casts were observed. Elevated levels of serum creatinine and C-reactive protein were also demonstrated, and MPO-, PR3- and azurocidin-ANCA were detected on serological examination. Renal biopsy showed pauci-immune crescentic glomerulonephritis. We therefore diagnosed rapidly progressive glomerulonephritis due to microscopic polyangiitis. Acetylcholine-receptor antibody was also detected. Chest computed tomography and MRI revealed a lobulated tumor in the anterior mediastinum. We thus also diagnosed myasthenia gravis with thymoma. CONCLUSION: Considering the patient's triple-ANCA positivity, thymic diseases may be associated with the pathogenesis of ANCA-associated vasculitis due to central T-cell tolerance. A further accumulation of cases is needed, because thymectomy does not always induce the remission of thymoma-associated autoimmune diseases.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/diagnóstico , Anticuerpos Anticitoplasma de Neutrófilos , Mediastino/diagnóstico por imagen , Poliangitis Microscópica , Timoma , Neoplasias del Timo , Anciano de 80 o más Años , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/sangre , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/complicaciones , Anticuerpos Anticitoplasma de Neutrófilos/sangre , Anticuerpos Anticitoplasma de Neutrófilos/clasificación , Biopsia/métodos , Diagnóstico Diferencial , Progresión de la Enfermedad , Femenino , Humanos , Glomérulos Renales/patología , Imagen por Resonancia Magnética/métodos , Poliangitis Microscópica/complicaciones , Poliangitis Microscópica/inmunología , Poliangitis Microscópica/patología , Poliangitis Microscópica/orina , Manejo de Atención al Paciente , Timoma/complicaciones , Timoma/diagnóstico , Timoma/inmunología , Timoma/patología , Neoplasias del Timo/complicaciones , Neoplasias del Timo/diagnóstico , Neoplasias del Timo/inmunología , Neoplasias del Timo/patología , Tomografía Computarizada por Rayos X/métodos , Urinálisis/métodos
9.
Physiol Genomics ; 50(4): 272-286, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29373075

RESUMEN

Arterial pressure (AP) is lower in premenopausal women than in men of a similar age. Premenopausal women exhibit a lower sympathetic activity and a greater baroreceptor reflex; however, mechanisms controlling sex differences in blood pressure regulation are not well understood. We hypothesized that different neuronal functions in the cardiovascular centers of the brains of men and women may contribute to the sex difference in cardiovascular homeostasis. Our previous studies on male spontaneously hypertensive rats (SHRs) and their normotensive counterparts, Wistar Kyoto (WKY) rats, revealed that the gene-expression profile of the nucleus tractus solitarius (NTS), a region of the medulla oblongata that is pivotal for regulating the set point of AP, is strongly associated with AP. Thus, we hypothesized that gene-expression profiles in the rat NTS are related to sex differences in AP regulation. Because female SHRs clearly exhibit lower AP than their male counterparts of a similar age, we investigated whether SHR NTS exhibits sex differences in gene expression by using microarray and RT-qPCR experiments. The transcript for transient receptor potential cation channel subfamily V member 4 ( Trpv4) was found to be upregulated in SHR NTS in females compared with that in males. The channel was expressed in neurons and glial cells within NTS. The TRPV4 agonist 4-alpha-phorbol-12,13-didecanoate (4α-PDD) decreased blood pressure when injected into NTS of rats. These findings suggest that altered TRPV4 expression might be involved in the sex differences in blood pressure regulation.


Asunto(s)
Presión Sanguínea/fisiología , Canales Catiónicos TRPV/metabolismo , Transcriptoma/genética , Animales , Presión Sanguínea/genética , Femenino , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Caracteres Sexuales , Núcleo Solitario/metabolismo , Canales Catiónicos TRPV/genética
10.
Mol Cell Neurosci ; 70: 76-85, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26640242

RESUMEN

Vitronectin (VN), which is an extracellular matrix protein, is known to be involved in the proliferation and differentiation of primary cultured cerebellar granule cell precursors (CGCPs); however, the effect of VN is not fully understood. In this study, we analyzed the effects of VN loss on the proliferation and differentiation of CGCPs in VN knockout (VNKO) mice in vivo. First, immunohistochemistry showed that VN was distributed in the region from the inner external granule layer (iEGL) through the internal granule layer (IGL) in wild-type (WT) mice. Next, we observed the formation of the cerebellar cortex using sagittal sections of VNKO mice at postnatal days (P) 5, 8 and 11. Loss of VN suppressed the ratio of NeuN, a neuronal differentiation marker, to positive cerebellar granule cells (CGCs) in the external granule layer (EGL) and the ratio of CGCs in the IGL at P8, indicating that the loss of VN suppresses the differentiation into CGCs. However, the loss of VN did not significantly affect the proliferation of CGCPs. Next, the effect of VN loss on the initial differentiation stage of CGCPs was examined. The loss of VN increased the expression levels of Transient axonal glycoprotein 1 (TAG1), a marker of neurons in the initial differentiation stage, in the cerebella of VNKO mice at P5 and 8 and increased the ratio of TAG1-positive cells in the primary culture of VNKO-derived CGCPs, indicating that the loss of VN accumulates the CGCPs in the initial differentiation stage. Taken together, these results demonstrate that VN promotes the progress of the initial differentiation stage of CGCPs.


Asunto(s)
Diferenciación Celular/fisiología , Cerebelo/metabolismo , Neuronas/metabolismo , Vitronectina/metabolismo , Animales , Proliferación Celular/fisiología , Cerebelo/citología , Contactina 2/genética , Contactina 2/metabolismo , Proteínas de Unión al ADN , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Vitronectina/genética
11.
Glycoconj J ; 33(2): 227-36, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26979432

RESUMEN

Vitronectin (VN) plays an important role in tissue regeneration. We previously reported that VN from partial hepatectomized (PH) rats results in a decrease of sialylation of VN and de-sialylation of VN decreases the cell spreading of hepatic stellate cells. In this study, we analyzed the mechanism how sialylation of VN regulates the properties of mouse primary cultured dermal fibroblasts (MDF) and a dermal fibroblast cell line, Swiss 3T3 cells. At first, we confirmed that VN from PH rats or de-sialylated VN also decreased cell spreading in MDF and Swiss 3T3 cells. The de-sialylation suppressed stress fiber formation in Swiss 3T3 cells. Next, we analyzed the effect of the de-sialylation of VN on stress fiber formation in Swiss 3T3 cells. RGD peptide, an inhibitor for a cell binding site of VN, did not affect the cell attachment of Swiss 3T3 cells on untreated VN but significantly decreased it on de-sialylated VN, suggesting that the de-sialylation attenuates the binding activity of an RGD-independent binding site in VN. To analyze a candidate RGD-independent binding site, an inhibition experiment of stress fiber formation for a heparin binding site was performed. The addition of heparin and treatment of cells with heparinase decreased stress fiber formation in Swiss 3T3 cells. Furthermore, de-sialylation increased the binding activity of VN to heparin, as detected by surface plasmon resonance (SPR). These results demonstrate that sialylation of VN glycans regulates stress fiber formation and cell spreading of dermal fibroblast cells via a heparin binding site.


Asunto(s)
Dermis/metabolismo , Fibroblastos/metabolismo , Fibras de Estrés/metabolismo , Vitronectina/metabolismo , Células 3T3 , Animales , Sitios de Unión , Dermis/citología , Fibroblastos/citología , Glicosilación , Ratones , Ratas , Porcinos
12.
J Clin Biochem Nutr ; 59(3): 199-206, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27895387

RESUMEN

Insulin resistance occurs frequently in patients with chronic kidney disease. However, the mechanisms of insulin resistance associated with chronic kidney disease are unclear. It is known that an increase in the mitochondrial acetyl-CoA (AcCoA)/CoA ratio causes insulin resistance in skeletal muscle, and this ratio is regulated by carnitine acetyltransferase that exchanges acetyl moiety between CoA and carnitine. Because excess acetyl moiety of AcCoA is excreted in urine as acetylcarnitine, we hypothesized that retention of acetylcarnitine might be a cause of insulin resistance in chronic kidney disease patients. Serum acetylcarnitine concentrations were measured in chronic kidney disease patients, and were significantly increased with reduction of renal function. The effects of excess extracellular acetylcarnitine on insulin resistance were studied in cultured skeletal muscle cells (C2C12 and human myotubes), and insulin-dependent glucose uptake was significantly and dose-dependently inhibited by addition of acetylcarnitine. The added acetylcarnitine was converted to carnitine via reverse carnitine acetyltransferase reaction, and thus the AcCoA concentration and AcCoA/CoA ratio in mitochondria were significantly elevated. The results suggest that increased serum acetylcarnitine in CKD patients causes AcCoA accumulation in mitochondria by stimulating reverse carnitine acetyltransferase reaction, which leads to insulin resistance in skeletal muscle.

13.
J Clin Biochem Nutr ; 55(3): 221-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25411530

RESUMEN

Carnitine is a vitamin-like compound that plays important roles in fatty acid ß-oxidation and the control of the mitochondrial coenzyme A/acetyl-CoA ratio. However, carnitine is not added to ordinary enteral nutrition or total parenteral nutrition. In this study, we determined the serum carnitine concentrations in subjects receiving ordinary enteral nutrition (EN) or total parenteral nutrition (TPN) and in patients with inflammatory bowel diseases to compare its levels with those of other nutritional markers. Serum samples obtained from 11 EN and 11 TPN patients and 82 healthy controls were examined. In addition, 10 Crohn's disease and 10 ulcerative colitis patients with malnutrition who were barely able to ingest an ordinary diet were also evaluated. Carnitine and its derivatives were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The carnitine concentrations in EN and TPN subjects were significantly lower compared with those of the control subjects. Neither the serum albumin nor the total cholesterol level was correlated with the carnitine concentration, although a significant positive correlation was found between the serum albumin and total cholesterol levels. Indeed, patients with CD and UC showed significantly reduced serum albumin and/or total cholesterol levels, but their carnitine concentrations remained normal. In conclusion, only a complete blockade of an ordinary diet, such as EN or TPN, caused a reduction in the serum carnitine concentration. Serum carnitine may be an independent biomarker of malnutrition, and its supplementation is needed in EN and TPN subjects even if their serum albumin and total cholesterol levels are normal.

14.
Anat Cell Biol ; 57(2): 305-315, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38575559

RESUMEN

Vitronectin (VN) is an extracellular matrix protein with a crucial role in regulating bone remodeling. In this study, we aimed to investigate the effect of VN deficiency in a mouse model of osteoporosis induced by ovariectomy (OVX). The findings revealed that the absence of VN led to an increase in the activity of tartrate-resistant acid phosphatase (TRAP), a marker for osteoclasts, in the plasma of OVX-operated mice. TRAP staining further demonstrated that VN deficiency resulted in a higher number of osteoclasts within the femurs of OVX-operated mice. X-ray micro-computed tomography analysis of the femurs in OVX-operated mice indicated that VN deficiency significantly suppressed the OVX-induced increase of marrow area and total volume of bone. Additionally, we assessed structural model index (SMI) and degree of anisotropy (DA) as indices of osteoporosis. The results showed that VN deficiency effectively attenuated the OVX-induced increase in SMI and DA among OVX-operated mice. In summary, our study demonstrates the vital role of VN in regulating osteoclastogenesis and bone remodeling in the mouse model of osteoporosis.

15.
J Clin Med ; 12(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36983252

RESUMEN

Decompensated liver cirrhosis is often complicated by refractory ascites, and intractable ascites are a predictor of poor prognosis in patients with liver cirrhosis. The treatment of ascites in patients with cirrhosis is based on the use of aldosterone blockers and loop diuretics, and occasionally vasopressin receptor antagonists are also used. Recent reports suggest that sodium-glucose cotransporter 2 (SGLT2) inhibitors may be a new treatment for refractory ascites with a different mechanism with respect to conventional agents. The main mechanisms of ascites reduction with SGLT2 inhibitors appear to be natriuresis and osmotic diuresis. However, other mechanisms, including improvements in glucose metabolism and nutritional status, hepatoprotection by ketone bodies and adiponectin, amelioration of the sympathetic nervous system, and inhibition of the renin-angiotensin-aldosterone system, may also contribute to the reduction of ascites. This literature review describes previously reported cases in which SGLT2 inhibitors were used to effectively treat ascites caused by liver cirrhosis. The discussion of the mechanisms involved is expected to contribute to establishing SGLT2 therapy for ascites in the future.

16.
Brain Res ; 1807: 148317, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36898477

RESUMEN

To analyze the role of syndecan-3 (SDC3), a heparan sulfate proteoglycan, in cerebellum development, we examined the effect of SDC3 on the transition from cell cycle exit to the initial differentiation stage of cerebellar granule cell precursors (CGCPs). First, we examined SDC3 localization in the developing cerebellum. SDC3 was mainly localized to the inner external granule layer where the transition from the cell cycle exit to the initial differentiation of CGCPs occurs. To examine how SDC3 regulates the cell cycle exit of CGCPs, we performed SDC3-knockdown (SDC3-KD) and -overexpression (Myc-SDC3) assays using primary CGCPs. SDC3-KD significantly increased the ratio of p27Kip1+ cells to total cells at day 3 in vitro (DIV3) and 4, but Myc-SDC3 reduced that at DIV3. Regarding the cell cycle exit efficiency using 24 h-labelled bromodeoxyuridine (BrdU) and a marker of cell cycling, Ki67, SDC3-KD significantly increased cell cycle exit efficiency (Ki67-; BrdU+ cells/BrdU+ cells) in primary CGCP at DIV4 and 5, but Myc-SDC3 reduced that at DIV4 and 5. However, SDC3-KD and Myc-SDC3 did not affect the efficiency of the final differentiation from CGCPs to granule cells at DIV3-5. Furthermore, the ratio of CGCPs in the cell cycle exiting stage to total cells, identified by initial differentiation markers TAG1 and Ki67 (TAG1+; Ki67+ cells), was considerably decreased by SDC3-KD at DIV4, but increased by Myc-SDC3 at DIV4 and 5. Altogether, these results indicate that SDC3 regulates the timing of the transition from the cell cycle exit stage to the initial differentiation stage of CGCP.


Asunto(s)
Cerebelo , Ratones , Animales , Bromodesoxiuridina/metabolismo , Antígeno Ki-67/metabolismo , Sindecano-3/metabolismo , Cerebelo/metabolismo , Diferenciación Celular , Ciclo Celular/fisiología
17.
Neurosci Lett ; 797: 137063, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36634888

RESUMEN

2-carba-cyclic phosphatidic acid (2ccPA) suppresses microglial and astrocyte inflammation for neuronal survival following traumatic brain injury. However, it remains unknown how 2ccPA regulates microglial activation. In this study, to elucidate the 2ccPA behavior in glial communication, we collected the astrocyte conditioned media (ACM) from primary astrocyte cultures that were treated by lipopolysaccharide (LPS) and 2ccPA and analyzed the alteration of microglial inflammation caused by the ACM treatment. The addition of the ACM derived from LPS- and 2ccPA-double treated astrocytes to microglia decreased the CD86+ pro-inflammatory M1 microglia, which were upregulated with the ACM collected from astrocytes treated by LPS without 2ccPA, while the direct addition of LPS and 2ccPA to microglia failed to decrease the CD86+ microglia to the basal level. We confirmed that the ACM from LPS- and 2ccPA-treated astrocytes increased the ratio of CD206+ anti-inflammatory M2 microglia to total microglia, whereas direct treatment of microglia with LPS and 2ccPA had no effect on the CD206+ microglia ratio, demonstrating the importance of astrocyte intervention in microglial polarization. In addition, we examined whether astrocytes modulate the 2ccPA-regulated proinflammatory cytokine production derived from microglia. The addition of the ACM from LPS- and 2ccPA-treated astrocytes to microglia remarkably canceled the LPS-induced upregulation of IL-1ß, IL-6, and TNF-α secreted from microglia, while the direct addition of LPS and 2ccPA to microglia showed no affect. Therefore, our results indicate that astrocytes mediate the 2ccPA function to shift microglia towards the M2 phenotype by interfering with the polarization of M1 microglia and to suppress cytokine production.


Asunto(s)
Antiinflamatorios , Astrocitos , Comunicación Celular , Polaridad Celular , Inflamación , Microglía , Humanos , Antiinflamatorios/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/patología , Células Cultivadas , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Microglía/patología , Fenotipo , Factor de Necrosis Tumoral alfa , Comunicación Celular/efectos de los fármacos
18.
Brain Res ; 1818: 148511, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506965

RESUMEN

Effective blood coagulation prevents inflammation and neuronal loss after brain injury. 2-Carba-cyclic phosphatidic acid (2ccPA), a biotherapeutic for brain injury, inhibits blood extravasation resulting from blood-brain barrier breakdown. However, the hemostasis mechanism of 2ccPA remains unclear. We determined the effects of 2ccPA-injection on blood coagulation and fibrinolysis using a needle-induced brain injury model. 2ccPA suppressed the expression of platelet degranulation-related genes. Immediately after brain injury, 2ccPA increased CD41+ platelet aggregation around the lesions and promoted fibrin aggregation. Additionally, 2ccPA supported fibrinolysis by upregulating plasminogen activator expression. These results suggest the acute effects of 2ccPA on brain hemostasis.


Asunto(s)
Lesiones Encefálicas , Fibrinólisis , Humanos , Fibrinólisis/fisiología , Ácidos Fosfatidicos/farmacología , Coagulación Sanguínea , Lesiones Encefálicas/tratamiento farmacológico
19.
J Neurosci ; 30(27): 9280-91, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20610763

RESUMEN

Signaling mechanisms involving Wnt/beta-catenin and sonic hedgehog (Shh) are known to regulate the development of ventral midbrain (vMB) dopamine neurons. However, the interactions between these two mechanisms and how such interactions can be targeted to promote a maximal production of dopamine neurons are not fully understood. Here we show that conditional mouse mutants with region-specific activation of beta-catenin signaling in vMB using the Shh-Cre mice show a marked expansion of Sox2-, Ngn2-, and Otx2-positive progenitors but perturbs their cell cycle exit and reduces the generation of dopamine neurons. Furthermore, activation of beta-catenin in vMB also results in a progressive loss of Shh expression and Shh target genes. Such antagonistic effects between the activation of Wnt/beta-catenin and Shh can be recapitulated in vMB progenitors and in mouse embryonic stem cell cultures. Notwithstanding these antagonistic interactions, cell-type-specific activation of beta-catenin in the midline progenitors using the tyrosine hydroxylase-internal ribosomal entry site-Cre (Th-IRES-Cre) mice leads to increased dopaminergic neurogenesis. Together, these results indicate the presence of a delicate balance between Wnt/beta-catenin and Shh signaling mechanisms in the progression from progenitors to dopamine neurons. Persistent activation of beta-catenin in early progenitors perturbs their cell cycle progression and antagonizes Shh expression, whereas activation of beta-catenin in midline progenitors promotes the generation of dopamine neurons.


Asunto(s)
Dopamina/metabolismo , Proteínas Hedgehog/metabolismo , Mesencéfalo/citología , Neurogénesis/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Recuento de Células/métodos , Diferenciación Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Mesencéfalo/embriología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Piridinas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Proteína Wnt1/genética , beta Catenina/genética
20.
J Biol Chem ; 285(23): 17301-9, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20335177

RESUMEN

The extracellular matrix (ECM) molecules play important roles in many biological and pathological processes. During tissue remodeling, the ECM molecules that are glycosylated are different from those of normal tissue owing to changes in the expression of many proteins that are responsible for glycan synthesis. Vitronectin (VN) is a major ECM molecule that recognizes integrin on hepatic stellate cells (HSCs). The present study attempted to elucidate how changes in VN glycans modulate the survival of HSCs, which play a critical role in liver regeneration. Plasma VN was purified from partially hepatectomized (PH) and sham-operated (SH) rats at 24 h after operation and non-operated (NO) rats. Adhesion of rat HSCs (rHSCs), together with phosphorylation of focal adhesion kinase, in PH-VN was decreased to one-half of that in NO- or SH-VN. Spreading of rHSCs on desialylated NO-VN was decreased to one-half of that of control VN, indicating the importance of sialylation of VN for activation of HSCs. Liquid chromatography/multiple-stage mass spectrometry analysis of Glu-C glycopeptides of each VN determined the site-specific glycosylation. In addition to the major biantennary complex-type N-glycans, hybrid-type N-glycans were site-specifically present at Asn(167). Highly sialylated O-glycans were found to be present in the Thr(110)-Thr(124) region. In PH-VN, the disialyl O-glycans and complex-type N-glycans were decreased while core-fucosylated N-glycans were increased. In addition, immunodetection after two-dimensional PAGE indicated the presence of hyper- and hyposialylated molecules in each VN and showed that hypersialylation was markedly attenuated in PH-VN. This study proposes that the alteration of VN glycosylation modulates the substrate adhesion to rat HSCs, which is responsible for matrix restructuring.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Regeneración Hepática , Ácidos Siálicos/metabolismo , Vitronectina/metabolismo , Animales , Supervivencia Celular , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Fucosa/química , Glicosilación , Masculino , Espectrometría de Masas/métodos , Ratas , Ratas Wistar , Treonina/química , Vitronectina/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda