Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Int J Syst Evol Microbiol ; 67(8): 3050-3056, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28820118

RESUMEN

A Gram-negative, aerobic, polar-flagellated and rod-shaped, sometimes slightly curved bacterium, designated MA5T, was isolated from the gut of an abalone of the species Haliotis gigantea collected in Japan. Phylogenetic analyses based on 16S rRNA, gyrB, hsp60 and rpoB gene sequences placed strain MA5T in the genus Arcobacter in an independent phylogenetic line. Comparison of the 16S rRNA gene sequence of this strain with those of the type strains of the established Arcobacter species revealed A. nitrofigilis (95.1 %) as nearest neighbour. Strain MA5T grew optimally at 25 °C, pH 6.0 to 9.0 and in the presence of 2 to 5 % (w/v) NaCl under both aerobic and microaerobic conditions. The predominant fatty acids found were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C12 : 0 3-OH and C18 : 1 ω7c. Menaquinone-6 (MK-6) and menaquinone-7 (MK-7) were found as the major respiratory quinones. The major polar lipids detected were phosphatidylethanolamine and phosphatidylglycerol. Strain MA5T could be differentiated phenotypically from the phylogenetic closest Arcobacter species by its ability to grow on 0.05 % safranin and 0.01 % 2,3,5-triphenyl tetrazolium chloride (TTC), but not on 0.5 % NaCl. The obtained DNA G+C content of strain MA5T was 27.9 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic distinctiveness of MA5T, this strain is considered to represent a novel species of the genus Arcobacter, for which the name Arcobacter haliotis sp. nov. is proposed. The type strain is MA5T (=LMG 28652T=JCM 31147T).


Asunto(s)
Arcobacter/clasificación , Gastrópodos/microbiología , Filogenia , Animales , Arcobacter/genética , Arcobacter/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Japón , Fosfatidiletanolaminas/química , Fosfatidilgliceroles/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
2.
Int J Syst Evol Microbiol ; 65(12): 4388-4393, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26354496

RESUMEN

Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0-9.0 and in the presence of 1.0-4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA-DNA relatedness to each other, 16-17 % towards F. algae LMG 28216T and 17-20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).


Asunto(s)
Flavobacteriaceae/clasificación , Gastrópodos/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Japón , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Phaeophyceae , Fosfatidiletanolaminas/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Taiwán , Vitamina K 2/análogos & derivados , Vitamina K 2/química
3.
Microbes Environ ; 37(5)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35691910

RESUMEN

Persistent RNA viruses, which have been suggested to form symbiotic relationships with their hosts, have been reported to occur in eukaryotes, such as plants, fungi, and algae. Based on empirical findings, these viruses may also be present in commercially cultivated macroalgae. Accordingly, the present study aimed to screen red macroalgae (family Bangiaceae conchocelis and Neopyropia yezoensis thallus) and processed nori sheets (N. yezoensis) for persistent RNA viruses using fragmented and primer-ligated dsRNA sequencing (FLDS) and targeted reverse transcription PCR (RT-PCR). A Totiviridae-related virus was detected in the conchocelis of Neoporphyra haitanensis, which is widely cultivated in China, while two Mitoviridae-related viruses were found in several conchocelis samples and all N. yezoensis-derived samples (thallus and nori sheets). Mitoviridae-related viruses in N. yezoensis are widespread among cultivated species and not expected to inhibit host growth. Mitoviridae-related viruses were also detected in several phylogenetically distant species in the family Bangiaceae, which suggests that these viruses persisted and coexist in the family Bangiaceae over a long period of time. The present study is the first to report persistent RNA viruses in nori sheets and their raw materials.


Asunto(s)
Porphyra , Virus ARN , Algas Marinas , Eucariontes/genética , Plantas/genética , Porphyra/genética , Virus ARN/genética , ARN Bicatenario
4.
PeerJ ; 8: e9326, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655989

RESUMEN

Gills are important organs for aquatic invertebrates because they harbor chemosynthetic bacteria, which fix inorganic carbon and/or nitrogen and provide their hosts with organic compounds. Nevertheless, in contrast to the intensive researches related to the gut microbiota, much is still needed to further understand the microbiota within the gills of invertebrates. Using abalones as a model, we investigated the community structure of microbes associated with the gills of these invertebrates using next-generation sequencing. Molecular identification of representative bacterial sequences was performed using cloning, nested PCR and fluorescence in situ hybridization (FISH) analysis with specific primers or probes. We examined three abalone species, namely Haliotis gigantea, H. discus and H. diversicolor using seawater and stones as controls. Microbiome analysis suggested that the gills of all three abalones had the unclassified Spirochaetaceae (one OTU, 15.7 ± 0.04%) and Mycoplasma sp. (one OTU, 9.1 ± 0.03%) as the core microbes. In most libraries from the gills of H. gigantea, however, a previously unknown epsilonproteobacterium species (one OTU) was considered as the dominant bacterium, which accounted for 62.2% of the relative abundance. The epsilonproteobacterium was only detected in the gills of H. diversicolor at 0.2% and not in H. discus suggesting that it may be unique to H. gigantea. Phylogenetic analysis performed using a near full-length 16S rRNA gene placed the uncultured epsilonproteobacterium species at the root of the family Helicobacteraceae. Interestingly, the uncultured epsilonproteobacterium was commonly detected from gill tissue rather than from the gut and foot tissues using a nested PCR assay with uncultured epsilonproteobacterium-specific primers. FISH analysis with the uncultured epsilonproteobacterium-specific probe revealed that probe-reactive cells in H. gigantea had a coccus-like morphology and formed microcolonies on gill tissue. This is the first report to show that epsilonproteobacterium has the potential to be a dominant species in the gills of the coastal gastropod, H. gigantea.

5.
Microbiologyopen ; 8(10): e890, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31168933

RESUMEN

Arcobacter have been frequently detected in and isolated from bivalves, but there is very little information on the genus Arcobacter in the abalone, an important fishery resource. This study aimed to investigate the genetic diversity and abundance of bacteria from the genus Arcobacter in the Japanese giant abalone, Haliotis gigantea, using molecular methods such as Arcobacter-specific clone libraries and fluorescence in situ hybridization (FISH). Furthermore, we attempted to isolate the Arcobacter species detected. Twelve genotypes of clones were obtained from Arcobacter-specific clone libraries. These sequences are not classified with any other known Arcobacter species including pathogenic Arcobacter spp., A. butzleri, A. skirrowii, and A. cryaerophilus, commonly isolated or detected from bivalves. From the FISH analysis, we observed that ARC94F-positive cells, presumed to be Arcobacter, accounted for 6.96 ± 0.72% of all EUB338-positive cells. In the culture method, three genotypes of Arcobacter were isolated from abalones. One genotype had a similarity of 99.2%-100.0% to the 16S rRNA gene of Arcobacter marinus, while the others showed only 93.3%-94.3% similarity to other Arcobacter species. These data indicate that abalones carry Arcobacter as a common bacterial genus which includes uncultured species.


Asunto(s)
Arcobacter/clasificación , Arcobacter/aislamiento & purificación , Biodiversidad , Gastrópodos/microbiología , Filogenia , Animales , Arcobacter/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genotipo , Hibridación Fluorescente in Situ , Metagenómica , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Genome Announc ; 5(11)2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28302779

RESUMEN

Arcobacter sp. strain LA11 was isolated from the gut of the abalone Haliotis discus Here, we present the annotation and analysis of the draft genome of this strain, which is involved in nitrogen metabolism.

7.
Genome Announc ; 4(6)2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27856598

RESUMEN

Formosa haliotis is a brown alga-degrading bacterium isolated from the gut of abalone Haliotis gigantea Here, we report the draft genome sequence of this bacterium and pointed out possible important features related to alginate degradation.

8.
Talanta ; 61(2): 203-10, 2003 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18969179

RESUMEN

A highly sensitive flow-injection method is proposed for the catalytic determination of vanadium(V) at sub-nanogram per milliliter levels using a new indicator reaction. The method is based on the catalytic effect of vanadium(V) on the bromate oxidation of N,N'-bis(2-hydroxyl-3-sulfopropyl)-tolidine. 1,2-Dihydroxybenzene-3,5-disulfonate was used as an activator in the vanadium(V)-catalyzed reaction and significantly enhanced the sensitivity of the method. Vanadium(V) in the range 0.01-3.0 ng ml(-1) was easily determined with sampling rate of about 30 h(-1). Vanadium(IV) could be also determined. The limit of detection (S/N=3) was 0.008 ng ml(-1) and the relative standard deviations were 1.4 and 1.6% for ten determinations of 0.2 ng ml(-1) vanadium(IV) and vanadium(V), respectively. Interferences from metal ions could be suppressed by the addition of ethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid) as a masking agent. The proposed method was successfully applied to the determination of vanadium in water samples.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda