Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Malar J ; 23(1): 79, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491359

RESUMEN

BACKGROUND: Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania. METHODS: Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-α, PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent of their polymorphisms and genetic diversity at the four sites. RESULTS: Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for ≥ 50.0% of the markers), and > 50.0% of the samples (range = 47.6-59.1%) were polyclonal, with a mean multiplicity of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited variability among the four sites based on mean allelic richness (RS = 7.48, range = 7.27-8.03, for an adjusted minimum sample size of 18 per site) and mean expected heterozygosity (He = 0.83, range = 0.80-0.85). Cluster analysis of haplotypes using STRUCTURE, principal component analysis, and pairwise genetic differentiation (FST) did not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-α was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic. CONCLUSION: Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population structure. Poly-α, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-α alone or with any of the other three markers could be adopted for use in TES in Tanzania.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Variación Genética , Tanzanía , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Genotipo , Repeticiones de Microsatélite , Antígenos de Protozoos/genética
2.
Malar J ; 23(1): 71, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461239

RESUMEN

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Asunto(s)
Antimaláricos , Artemisininas , Carubicina/análogos & derivados , Malaria Falciparum , Humanos , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Tanzanía , Artemisininas/farmacología , Artemisininas/uso terapéutico , Arteméter/uso terapéutico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Combinación Arteméter y Lumefantrina/farmacología , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/epidemiología , Biomarcadores , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico
3.
Malar J ; 22(1): 304, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817185

RESUMEN

BACKGROUND: Despite significant decline in the past two decades, malaria is still a major public health concern in Tanzania; with over 93% of the population still at risk. Community knowledge, attitudes and practices (KAP), and beliefs are key in enhancing uptake and utilization of malaria control interventions, but there is a lack of information on their contribution to effective control of the disease. This study was undertaken to determine KAP and beliefs of community members and service providers on malaria, and how they might be associated with increased risk and persistence of the disease burden in North-western and Southern regions of Tanzania. METHODS: This was an exploratory study that used qualitative methods including 16 in-depth interviews (IDI) and 32 focus group discussions (FGDs) to collect data from health service providers and community members, respectively. The study was conducted from September to October 2017 and covered 16 villages within eight districts from four regions of mainland Tanzania (Geita, Kigoma, Mtwara and Ruvuma) with persistently high malaria transmission for more than two decades. RESULTS: Most of the participants had good knowledge of malaria and how it is transmitted but some FGD participants did not know the actual cause of malaria, and thought that it is caused by bathing and drinking un-boiled water, or consuming contaminated food that has malaria parasites without warming it. Reported barriers to malaria prevention and control (by FGD and IDI participants) included shortage of qualified health workers, inefficient health financing, low care-seeking behaviour, consulting traditional healers, use of local herbs to treat malaria, poverty, increased breeding sites by socio-economic activities and misconceptions related to the use of bed nets and indoor residual spraying (IRS). Among the misconceptions, some participants believed that bed nets provided for free by the government came with bedbugs while others reported that free bed nets caused impotence among men. CONCLUSION: Despite good knowledge of malaria, several risk factors, such as socio-economic and behavioural issues, and misconceptions related to the use of bed nets and IRS were reported. Other key factors included unavailability or limited access to health services, poor health financing and economic activities that potentially contributed to persistence of malaria burden in these regions. Relevant policies and targeted malaria interventions, focusing on understanding socio-cultural factors, should be implemented to reduce and finally eliminate the disease in the study regions and others with persistent transmission.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Malaria , Masculino , Humanos , Tanzanía , Control de Mosquitos/métodos , Malaria/epidemiología , Factores de Riesgo
4.
Malar J ; 21(1): 92, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35300707

RESUMEN

BACKGROUND: To accelerate progress against malaria in high burden countries, a strategic reorientation of resources at the sub-national level is needed. This paper describes how mathematical modelling was used in mainland Tanzania to support the strategic revision that followed the mid-term review of the 2015-2020 national malaria strategic plan (NMSP) and the epidemiological risk stratification at the council level in 2018. METHODS: Intervention mixes, selected by the National Malaria Control Programme, were simulated for each malaria risk strata per council. Intervention mixes included combinations of insecticide-treated bed nets (ITN), indoor residual spraying, larval source management, and intermittent preventive therapies for school children (IPTsc). Effective case management was either based on estimates from the malaria indicator survey in 2016 or set to a hypothetical target of 85%. A previously calibrated mathematical model in OpenMalaria was used to compare intervention impact predictions for prevalence and incidence between 2016 and 2020, or 2022. RESULTS: For each malaria risk stratum four to ten intervention mixes were explored. In the low-risk and urban strata, the scenario without a ITN mass campaign in 2019, predicted high increase in prevalence by 2020 and 2022, while in the very-low strata the target prevalence of less than 1% was maintained at low pre-intervention transmission intensity and high case management. In the moderate and high strata, IPTsc in addition to existing vector control was predicted to reduce the incidence by an additional 15% and prevalence by 22%. In the high-risk strata, all interventions together reached a maximum reduction of 76%, with around 70% of that reduction attributable to high case management and ITNs. Overall, the simulated revised NMSP was predicted to achieve a slightly lower prevalence in 2020 compared to the 2015-2020 NMSP (5.3% vs 6.3%). CONCLUSION: Modelling supported the choice of intervention per malaria risk strata by providing impact comparisons of various alternative intervention mixes to address specific questions relevant to the country. The use of a council-calibrated model, that reproduces local malaria trends, represents a useful tool for compiling available evidence into a single analytical platform, that complement other evidence, to aid national programmes with decision-making processes.


Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria , Niño , Humanos , Incidencia , Malaria/epidemiología , Malaria/prevención & control , Prevalencia , Tanzanía/epidemiología
5.
Malar J ; 21(1): 361, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457087

RESUMEN

BACKGROUND: Malaria rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum histidine-rich protein 2 (HRP2) antigen are widely used for detection of active infection with this parasite and are the only practical malaria diagnostic test in some endemic settings. External validation of RDT results from field surveys can confirm appropriate RDT performance. METHODS: A community-based cross-sectional survey was conducted between July and November 2017 enrolling participants of all ages in households from 15 villages in four border regions of Tanzania: Geita, Kigoma, Mtwara and Ruvuma. All participants had an RDT performed in the field and provided a blood sample for later laboratory multiplex antigen detection of HRP2. In assessing the continuous HRP2 levels in participant blood versus RDT result, dose-response logistic regression provided quantitative estimates for HRP2 limit of detection (LOD). RESULTS: From the 15 study villages, 6941 persons were enrolled that had a RDT at time of enrollment and provided a DBS for later laboratory antigen detection. RDT positive prevalence for the HRP2 band by village ranged from 20.0 to 43.6%, but the magnitude of this prevalence did not have an effect on the estimated LOD of RDTs utilized in different villages. Overall, HRP2 single-target tests had a lower LOD at the 95% probability of positive RDT (4.3 ng/mL; 95% CI 3.4-5.4) when compared to pLDH/HRP2 dual target tests (5.4 ng/mL; 4.5-6.3), though this difference was not significant. With the exception of one village, all other 14 villages (93.3%) showed RDT LOD estimates at 90% probability of positive RDT between 0.5 and 12.0 ng/mL. CONCLUSIONS: Both HRP2-only and pLDH/HRP2 combo RDTs utilized in a 2017 Tanzania cross-sectional survey of border regions generally performed well, and reliably detected HRP2 antigen in the low ng/mL range. Though single target tests had lower levels of HRP2 detection, both tests were within similar ranges among the 15 villages. Comparison of quantitative HRP2 detection limits among study sites can help interpret RDT testing results when generating population prevalence estimates for malaria infection.


Asunto(s)
Histidina , Malaria , Humanos , Pruebas Diagnósticas de Rutina , Estudios Transversales , Tanzanía/epidemiología
6.
Mol Ecol ; 30(1): 100-113, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107096

RESUMEN

High-throughput Plasmodium genomic data is increasingly useful in assessing prevalence of clinically important mutations and malaria transmission patterns. Understanding parasite diversity is important for identification of specific human or parasite populations that can be targeted by control programmes, and to monitor the spread of mutations associated with drug resistance. An up-to-date understanding of regional parasite population dynamics is also critical to monitor the impact of control efforts. However, this data is largely absent from high-burden nations in Africa, and to date, no such analysis has been conducted for malaria parasites in Tanzania countrywide. To this end, over 1,000 P. falciparum clinical isolates were collected in 2017 from 13 sites in seven administrative regions across Tanzania, and parasites were genotyped at 1,800 variable positions genome-wide using molecular inversion probes. Population structure was detectable among Tanzanian P. falciparum parasites, approximately separating parasites from the northern and southern districts and identifying genetically admixed populations in the north. Isolates from nearby districts were more likely to be genetically related compared to parasites sampled from more distant districts. Known drug resistance mutations were seen at increased frequency in northern districts (including two infections carrying pfk13-R561H), and additional variants with undetermined significance for antimalarial resistance also varied by geography. Malaria Indicator Survey (2017) data corresponded with genetic findings, including average region-level complexity-of-infection and malaria prevalence estimates. The parasite populations identified here provide important information on extant spatial patterns of genetic diversity of Tanzanian parasites, to which future surveys of genetic relatedness can be compared.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Resistencia a Medicamentos/genética , Humanos , Malaria Falciparum/epidemiología , Sondas Moleculares , Plasmodium falciparum/genética , Tanzanía/epidemiología
7.
Malar J ; 19(1): 177, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384923

RESUMEN

BACKGROUND: Recent malaria control efforts in mainland Tanzania have led to progressive changes in the prevalence of malaria infection in children, from 18.1% (2008) to 7.3% (2017). As the landscape of malaria transmission changes, a sub-national stratification becomes crucial for optimized cost-effective implementation of interventions. This paper describes the processes, data and outputs of the approach used to produce a simplified, pragmatic malaria risk stratification of 184 councils in mainland Tanzania. METHODS: Assemblies of annual parasite incidence and fever test positivity rate for the period 2016-2017 as well as confirmed malaria incidence and malaria positivity in pregnant women for the period 2015-2017 were obtained from routine district health information software. In addition, parasite prevalence in school children (PfPR5to16) were obtained from the two latest biennial council representative school malaria parasitaemia surveys, 2014-2015 and 2017. The PfPR5to16 served as a guide to set appropriate cut-offs for the other indicators. For each indicator, the maximum value from the past 3 years was used to allocate councils to one of four risk groups: very low (< 1%PfPR5to16), low (1- < 5%PfPR5to16), moderate (5- < 30%PfPR5to16) and high (≥ 30%PfPR5to16). Scores were assigned to each risk group per indicator per council and the total score was used to determine the overall risk strata of all councils. RESULTS: Out of 184 councils, 28 were in the very low stratum (12% of the population), 34 in the low stratum (28% of population), 49 in the moderate stratum (23% of population) and 73 in the high stratum (37% of population). Geographically, most of the councils in the low and very low strata were situated in the central corridor running from the north-east to south-west parts of the country, whilst the areas in the moderate to high strata were situated in the north-west and south-east regions. CONCLUSION: A stratification approach based on multiple routine and survey malaria information was developed. This pragmatic approach can be rapidly reproduced without the use of sophisticated statistical methods, hence, lies within the scope of national malaria programmes across Africa.


Asunto(s)
Malaria/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Malaria/transmisión , Masculino , Persona de Mediana Edad , Parasitemia/epidemiología , Embarazo , Prevalencia , Factores de Riesgo , Tanzanía/epidemiología , Adulto Joven
8.
Malar J ; 19(1): 391, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148255

RESUMEN

BACKGROUND: Histidine-rich protein 2 (HRP2)-based malaria rapid diagnostic tests (RDTs) are effective and widely used for the detection of wild-type Plasmodium falciparum infections. Although recent studies have reported false negative HRP2 RDT results due to pfhrp2 and pfhrp3 gene deletions in different countries, there is a paucity of data on the deletions of these genes in Tanzania. METHODS: A community-based cross-sectional survey was conducted between July and November 2017 in four regions: Geita, Kigoma, Mtwara and Ruvuma. All participants had microscopy and RDT performed in the field and provided a blood sample for laboratory multiplex antigen detection (for Plasmodium lactate dehydrogenase, aldolase, and P. falciparum HRP2). Samples showing RDT false negativity or aberrant relationship of HRP2 to pan-Plasmodium antigens were genotyped to detect the presence/absence of pfhrp2/3 genes. RESULTS: Of all samples screened by the multiplex antigen assay (n = 7543), 2417 (32.0%) were positive for any Plasmodium antigens while 5126 (68.0%) were negative for all antigens. The vast majority of the antigen positive samples contained HRP2 (2411, 99.8%), but 6 (0.2%) had only pLDH and/or aldolase without HRP2. Overall, 13 samples had an atypical relationship between a pan-Plasmodium antigen and HRP2, but were positive by PCR. An additional 16 samples with negative HRP2 RDT results but P. falciparum positive by microscopy were also chosen for pfhrp2/3 genotyping. The summation of false negative RDT results and laboratory antigen results provided 35 total samples with confirmed P. falciparum DNA for pfhrp2/3 genotyping. Of the 35 samples, 4 (11.4%) failed to consistently amplify positive control genes; pfmsp1 and pfmsp2 and were excluded from the analysis. The pfhrp2 and pfhrp3 genes were successfully amplified in the remaining 31 (88.6%) samples, confirming an absence of deletions in these genes. CONCLUSIONS: This study provides evidence that P. falciparum parasites in the study area have no deletions of both pfhrp2 and pfhrp3 genes. Although single gene deletions could have been missed by the multiplex antigen assay, the findings support the continued use of HRP2-based RDTs in Tanzania for routine malaria diagnosis. There is a need for the surveillance to monitor the status of pfhrp2 and/or pfhrp3 deletions in the future.


Asunto(s)
Antígenos de Protozoos/genética , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Eliminación de Gen , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adolescente , Adulto , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Prevalencia , Tanzanía , Adulto Joven
9.
Malar J ; 19(1): 292, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32799857

RESUMEN

BACKGROUND: In 2015, a China-UK-Tanzania tripartite pilot project was implemented in southeastern Tanzania to explore a new model for reducing malaria burden and possibly scaling-out the approach into other malaria-endemic countries. The 1,7-malaria Reactive Community-based Testing and Response (1,7-mRCTR) which is a locally-tailored approach for reporting febrile malaria cases in endemic villages was developed to stop transmission and Plasmodium life-cycle. The (1,7-mRCTR) utilizes existing health facility data and locally trained community health workers to conduct community-level testing and treatment. METHODS: The pilot project was implemented from September 2015 to June 2018 in Rufiji District, southern Tanzania. The study took place in four wards, two with low incidence and two with a higher incidence. One ward of each type was selected for each of the control and intervention arms. The control wards implemented the existing Ministry of Health programmes. The 1,7-mRCTR activities implemented in the intervention arm included community testing and treatment of malaria infection. Malaria case-to-suspect ratios at health facilities (HF) were aggregated by villages, weekly to identify the village with the highest ratio. Community-based mobile test stations (cMTS) were used for conducting mass testing and treatment. Baseline (pre) and endline (post) household surveys were done in the control and intervention wards to assess the change in malaria prevalence measured by the interaction term of 'time' (post vs pre) and arm in a logistic model. A secondary analysis also studied the malaria incidence reported at the HFs during the intervention. RESULTS: Overall the 85 rounds of 1,7-mRCTR conducted in the intervention wards significantly reduced the odds of malaria infection by 66% (adjusted OR 0.34, 95% CI 0.26,0.44, p < 0001) beyond the effect of the standard programmes. Malaria prevalence in the intervention wards declined by 81% (from 26% (95% CI 23.7, 7.8), at baseline to 4.9% (95% CI 4.0, 5.9) at endline). In villages receiving the 1,7-mRCTR, the short-term case ratio decreased by over 15.7% (95% CI - 33, 6) compared to baseline. CONCLUSION: The 1,7-mRCTR approach significantly reduced the malaria burden in the areas of high transmission in rural southern Tanzania. This locally tailored approach could accelerate malaria control and elimination efforts. The results provide the impetus for further evaluation of the effectiveness and scaling up of this approach in other high malaria burden countries in Africa, including Tanzania.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Agentes Comunitarios de Salud/estadística & datos numéricos , Instituciones de Salud/estadística & datos numéricos , Malaria/prevención & control , Antimaláricos/uso terapéutico , Control de Enfermedades Transmisibles/estadística & datos numéricos , Incidencia , Malaria/epidemiología , Malaria/parasitología , Proyectos Piloto , Prevalencia , Población Rural/estadística & datos numéricos , Tanzanía/epidemiología
10.
Malar J ; 18(1): 99, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909922

RESUMEN

BACKGROUND: The Tanzanian National Malaria Control Programme (NMCP) and its partners have been implementing regular therapeutic efficacy studies (TES) to monitor the performance of different drugs used or with potential use in Tanzania. However, most of the recent TES focused on artemether-lumefantrine, which is the first-line anti-malarial for the treatment of uncomplicated falciparum malaria. Data on the performance of other artemisinin-based combinations is urgently needed to support timely review and changes of treatment guidelines in case of drug resistance to the current regimen. This study was conducted at two NMCP sentinel sites (Kibaha, Pwani and Ujiji, Kigoma) to assess the efficacy and safety of artesunate-amodiaquine (ASAQ) and dihydroartemisinin-piperaquine (DP), which are the current alternative artemisinin-based combinations in Tanzania. METHODS: This was a single-arm prospective evaluation of the clinical and parasitological responses of ASAQ and DP for directly observed treatment of uncomplicated falciparum malaria. Children aged 6 months to 10 years and meeting the inclusion criteria were enrolled and treated with either ASAQ or DP. In each site, patients were enrolled sequentially; thus, enrolment of patients for the assessment of one artemisinin-based combination was completed before patients were recruited for assessment of the second drugs. Follow-up was done for 28 or 42 days for ASAQ and DP, respectively. The primary outcome was PCR corrected cure rates while the secondary outcome was occurrence of adverse events (AEs) or serious adverse events (SAEs). RESULTS: Of the 724 patients screened at both sites, 333 (46.0%) were enrolled and 326 (97.9%) either completed the 28/42 days of follow-up, or attained any of the treatment outcomes. PCR uncorrected adequate clinical and parasitological response (ACPR) for DP on day 42 was 98.8% and 75.9% at Kibaha and Ujiji, respectively. After PCR correction, DP's ACPR was 100% at both sites. For ASAQ, no parasite recurrence occurred giving 100% ACPR on day 28. Only one patient in the DP arm (1.1%) from Ujiji had parasites on day 3. Of the patients recruited (n = 333), 175 (52.6%) had AEs with 223 episodes (at both sites) in the two treatment groups. There was no SAE and the commonly reported AE episodes (with > 5%) included, cough, running nose, abdominal pain, diarrhoea and fever. CONCLUSION: Both artemisinin-based combinations had high cure rates with PCR corrected ACPR of 100%. The two drugs had adequate safety with no SAE and all AEs were mild, and not associated with the anti-malarials. Continued TES is critical to monitor the performance of nationally recommended artemisinin-based combination therapy and supporting evidence-based review of malaria treatment policies. Trial registration This study is registered at ClinicalTrials.gov, No. NCT03431714.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Quinolinas/uso terapéutico , Niño , Preescolar , Combinación de Medicamentos , Femenino , Humanos , Lactante , Masculino , Tanzanía
11.
Malar J ; 18(1): 88, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30898164

RESUMEN

BACKGROUND: The World Health Organization recommends regular therapeutic efficacy studies (TES) to monitor the performance of first and second-line anti-malarials. In 2016, efficacy and safety of artemether-lumefantrine (AL) for the treatment of uncomplicated falciparum malaria were assessed through a TES conducted between April and October 2016 at four sentinel sites of Kibaha, Mkuzi, Mlimba, and Ujiji in Tanzania. The study also assessed molecular markers of artemisinin and lumefantrine (partner drug) resistance. METHODS: Eligible patients were enrolled at the four sites, treated with standard doses of AL, and monitored for 28 days with clinical and laboratory assessments. The main outcomes were PCR corrected cure rates, day 3 positivity rates, safety of AL, and prevalence of single nucleotide polymorphisms in Plasmodium falciparum kelch 13 (Pfk13) (codon positions: 440-600) and P. falciparum multi-drug resistance 1 (Pfmdr1) genes (codons: N86Y, Y184F and D1246Y), markers of artemisinin and lumefantrine resistance, respectively. RESULTS: Of 344 patients enrolled, three withdrew, six were lost to follow-up; and results were analysed for 335 (97.4%) patients. Two patients had treatment failure (one early treatment failure and one recrudescent infection) after PCR correction, yielding an adequate clinical and parasitological response of > 98%. Day 3 positivity rates ranged from 0 to 5.7%. Common adverse events included cough, abdominal pain, vomiting, and diarrhoea. Two patients had serious adverse events; one died after the first dose of AL and another required hospitalization after the second dose of AL (on day 0) but recovered completely. Of 344 samples collected at enrolment (day 0), 92.7% and 100% were successfully sequenced for Pfk13 and Pfmdr1 genes, respectively. Six (1.9%) had non-synonymous mutations in Pfk13, none of which had been previously associated with artemisinin resistance. For Pfmdr1, the NFD haplotype (codons N86, 184F and D1246) was detected in 134 (39.0%) samples; ranging from 33.0% in Mlimba to 45.5% at Mkuzi. The difference among the four sites was not significant (p = 0.578). All samples had a single copy of the Pfmdr1 gene. CONCLUSION: The study indicated high efficacy of AL and the safety profile was consistent with previous reports. There were no known artemisinin-resistance Pfk13 mutations, but there was a high prevalence of a Pfmdr1 haplotype associated with reduced sensitivity to lumefantrine (but no reduced efficacy was observed in the subjects). Continued TES and monitoring of markers of resistance to artemisinin and partner drugs is critical for early detection of resistant parasites and to inform evidence-based malaria treatment policies. Trial Registration ClinicalTrials.gov NCT03387631.


Asunto(s)
Antimaláricos/efectos adversos , Combinación Arteméter y Lumefantrina/efectos adversos , Resistencia a Medicamentos/genética , Malaria/prevención & control , Polimorfismo de Nucleótido Simple/efectos de los fármacos , Proteínas Protozoarias/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Protozoarias/metabolismo , Tanzanía
12.
Malar J ; 17(1): 261, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29996849

RESUMEN

BACKGROUND: Artemether-lumefantrine (AL) is the recommended first-line artemisinin-based combination therapy (ACT) for the treatment of uncomplicated falciparum malaria in most of the malaria-endemic countries, including Tanzania. Recently, dihydroartemisinin-piperaquine (DP) has been recommended as the alternative anti-malarial to ensure effective case management in Tanzania. This study assessed the parasite clearance rate and efficacy of AL and DP among patients aged 6 months to 10 years with uncomplicated falciparum malaria in two sites with different malaria transmission intensity. METHODS: This was an open-label, randomized trial that was conducted at two sites of Muheza Designated District Hospital and Ujiji Health Centre in Tanga and Kigoma regions, respectively. Patients meeting inclusion criteria were enrolled, treated with either AL or DP and followed up for 28 (extended to 42) and 42 (63) days for AL and DP, respectively. Parasite clearance time was monitored in the first 72 h post treatment and the clearance rate constant and half-life were calculated using an established parasite clearance estimator. The primary outcome was parasitological cure on days 28 and 42 for AL and DP, respectively, while secondary outcome was extended parasitological cure on days 42 and 63 for AL and DP, respectively. RESULTS: Of the 509 children enrolled (192 at Muheza and 317 at Ujiji), there was no early treatment failure and PCR uncorrected cure rates on day 28 in the AL group were 77.2 and 71.2% at Muheza and Ujiji, respectively. In the DP arm, the PCR uncorrected cure rate on day 42 was 73.6% at Muheza and 72.5% at Ujiji. With extended follow-up (to day 42 for AL and 63 for DP) cure rates were lower at Ujiji compared to Muheza (AL: 60.2 and 46.1%, p = 0.063; DP: 57.6 and 40.3% in Muheza and Ujiji, respectively, p = 0.021). The PCR corrected cure rate ranged from 94.6 to 100% for all the treatment groups at both sites. Parasite clearance rate constant was similar in the two groups and at both sites (< 0.28/h); the slope half-life was < 3.0 h and all but only one patient cleared parasites by 72 h. CONCLUSION: These findings confirm high efficacy of the first- and the newly recommended alternative ACT for treatments for uncomplicated falciparum malaria in Tanzania. The high parasite clearance rate suggests absence of suspected artemisinin resistance, defined as delayed parasite clearance. Trial registration This trial is registered at ClinicalTrials.gov under registration number NCT02590627.


Asunto(s)
Antimaláricos , Combinación Arteméter y Lumefantrina , Artemisininas , Malaria Falciparum , Quinolinas , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/prevención & control , Quinolinas/uso terapéutico , Tanzanía
13.
Malar J ; 17(1): 369, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333022

RESUMEN

BACKGROUND: Artemisinin-based combination therapy (ACT) is the first-line anti-malarial treatment of uncomplicated malaria in most malaria endemic countries, including Tanzania. Unfortunately, there have been reports of artemisinin resistance and ACT failure from South East Asia highlighting the need to monitor therapeutic efficacy of ACT in these countries as recommended by World Health Organization. METHODS: Open-label single arm studies in mainland Tanzania were conducted in nine sentinel sites in 2011, 2012 and 2015 to assess the efficacy and safety of artemether/lumefantrine (AL) and artesunate/amodiaquine (ASAQ) using 28 days follow-up and dihydroartemisinin/piperaquine (DHAPQ) using 42 days follow-up. Mutations in the propeller domain of the Plasmodium falciparum kelch 13 (k13) gene and amplification of the P. falciparum plasmepsin 2 (pm2) gene, associated with artemisinin and piperaquine (PQ) resistance, were also investigated. RESULTS: Of the 428 patients enrolled, 328 patients provided study endpoint. For AL, the PCR corrected per-protocol analysis showed adequate clinical and parasitological response (ACPR) of 90.3% (n = 28; 95% CI 74.2-98.0) in Kyela 2012, 95.7% (n = 22; 95% CI 78.1-99.0) in Chamwino, 100% in Muheza (n = 29; 95% CI 88.1-100), 100% in Nagaga (n = 39; 95% CI 91.0-100) and Kyela 2015 (n = 60; 95% CI 94.0-100). For ASAQ, PCR corrected ACPR of 98% (n = 49; 95% CI 89.4-99.9) and 100% (n = 25; 95% CI 86.3-100) were observed in 2011 in Ujiji and Kibaha, respectively. For DHAPQ, the ACPR was 100% (n = 71; 95% CI 94.9-100). Of the 235 samples with genetic interpretable results, only 7 (3%) had non-synonymous k13 mutations. None of these are candidate or validated markers of artemisinin resistance and all patients carrying these alleles cleared the parasites on day 3. Of the DHAPQ group, 10% (3/29) of the samples with interpretable results had pm2 multiple copies and none of them was associated with treatment failure. CONCLUSION: All the tested ACT in mainland Tanzania were highly efficacious and none of validated k13 mutants associated with artemisinin resistance was observed. However, three isolates with multiple copy numbers of pm2 gene associated with PQ resistance among the limited samples tested successfully calls for further investigation. Trial registration Number ACTRN12615000159550. Registered 18th February 2015, https://www.anzctr.org.au/trial/MyTrial.aspx.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/prevención & control , Quinolinas/uso terapéutico , Adolescente , Amodiaquina/efectos adversos , Antimaláricos/efectos adversos , Combinación Arteméter y Lumefantrina/efectos adversos , Artemisininas/efectos adversos , Niño , Preescolar , Combinación de Medicamentos , Femenino , Humanos , Lactante , Masculino , Plasmodium falciparum/efectos de los fármacos , Estudios Prospectivos , Quinolinas/efectos adversos , Tanzanía
14.
Malar J ; 16(1): 6, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28049481

RESUMEN

BACKGROUND: Tanzania has seen a reduction in the fraction of fevers caused by malaria, likely due in part to scale-up of control measures. While national guidelines require parasite-based diagnosis prior to treatment, it is estimated that more than half of suspected malaria treatment-seeking in Tanzania initiates in the private retail sector, where diagnosis by malaria rapid diagnostic test (RDT) or microscopy is illegal. This pilot study investigated whether the introduction of RDTs into Accredited Drug Dispensing Outlets (ADDOs) under realistic market conditions would improve case management practices. METHODS: Dispensers from ADDOs in two intervention districts in Tanzania were trained to stock and perform RDTs and monitored quarterly. Each district was assigned a different recommended retail price to evaluate the need for a subsidy. Malaria RDT and artemisinin-based combination therapy (ACT) uptake and availability were measured pre-intervention and 1 year post-intervention through structured surveys of ADDO owners and exiting customers in both intervention districts and one contiguous control district. Descriptive analysis and logistic regression were used to compare the three districts and identify predictive variables for testing. RESULTS AND DISCUSSION: A total of 310 dispensers from 262 ADDOs were trained to stock and perform RDTs. RDT availability in intervention ADDOs increased from 1% (n = 172) to 73% (n = 163) during the study; ACT medicines were available in 75% of 260 pre-intervention and 68% of 254 post-intervention ADDOs. Pre-treatment testing performed within the ADDO increased from 0 to 65% of suspected malaria patients who visited a shop (95% CI 60.8-69.6%) with no difference between intervention districts. Overall parasite-based diagnosis increased from 19 to 74% in intervention districts and from 3 to 18% in the control district. Prior knowledge of RDT availability (aOR = 1.9, p = 0.03) and RDT experience (aOR = 1.9, p = 0.01) were predictors for testing. Adherence data indicated that 75% of malaria positives received ACT, while 3% of negatives received ACT. CONCLUSIONS: Trained and supervised ADDO dispensers in rural Tanzania performed and sold RDTs under real market conditions to two-thirds of suspected malaria patients during this one-year pilot. These results support the hypothesis that introducing RDTs into regulated private retail sector settings can improve malaria testing and treatment practices without an RDT subsidy. Trial registration ISRCTN ISRCTN14115509.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Lactonas/uso terapéutico , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Farmacias , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios Transversales , Femenino , Accesibilidad a los Servicios de Salud , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Población Rural , Encuestas y Cuestionarios , Tanzanía , Adulto Joven
15.
Malar J ; 16(1): 236, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28583119

RESUMEN

BACKGROUND: Malaria in pregnancy (MiP) remains a major public health challenge in areas of high malaria transmission. Intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is recommended to prevent the adverse consequences of MiP. The effectiveness of SP for IPTp may be reduced in areas where the dhps581 mutation (a key marker of high level SP resistance) is found; this mutation was previously reported to be common in the Tanga Region of northern Tanzania, but there are limited data from other areas. The frequency of molecular markers of SP resistance was investigated in malaria parasites from febrile patients at health centres (HC) in seven regions comprising the Lake and Southern Zones of mainland Tanzania as part of the ongoing efforts to generate national-wide data of SP resistance. METHODS: A cross-sectional survey was conducted in the outpatient departments of 14 HCs in seven regions from April to June, 2015. 1750 dried blood spot (DBS) samples were collected (117 to 160 per facility) from consenting patients with positive rapid diagnostic tests for malaria, and no recent (within past 2 months) exposure to SP or related drugs. DNA was extracted from the DBS, pooled by HC, and underwent pooled targeted amplicon deep sequencing to yield estimates of mutated parasite allele frequency at each locus of interest. RESULTS: The dhps540 mutation was common across all 14 sites, ranging from 55 to 98.4% of sequences obtained. Frequency of the dhps581 mutation ranged from 0 to 2.4%, except at Kayanga HC (Kagera Region, Lake Zone) where 24.9% of sequences obtained were mutated. The dhfr164 mutation was detected only at Kanyanga HC (0.06%). CONCLUSION: By pooling DNA extracts, the allele frequency of mutations in 14 sites could be directly determined on a single deep-sequencing run. The dhps540 mutant was very common at all locations. Surprisingly, the dhps581 was common at one health center, but rare in all the others, suggesting that there is geographic micro-heterogeneity in mutant distribution and that accurate surveillance requires inclusion of multiple sites. A better understanding of the effect of the dhps581 mutant on the efficacy of IPTp-SP is needed.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios Transversales , Combinación de Medicamentos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Malaria Falciparum/parasitología , Persona de Mediana Edad , Mutación , Proteínas Protozoarias/metabolismo , Tanzanía , Adulto Joven
16.
Pan Afr Med J ; 45(Suppl 1): 7, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538363

RESUMEN

In 2018, Zanzibar developed a national malaria strategic plan IV (2018-2023) to guide elimination of malaria by 2023. We assessed progress in the implementation of malaria activities as part of the end-term review of the strategic plan. The review was done between August and October 2022 following the WHO guideline to assess progress made towards malaria elimination, effectiveness of the health systems in delivering malaria case management; and malaria financing. A desk review examined available malaria data, annual work plans and implementation reports for evidence of implemented malaria activities. This was complemented by field visits to selected health facilities and communities by external experts, and interviews with health management teams and inhabitants to authenticate desk review findings. A steady increase in the annual parasite incidence (API) was observed in Zanzibar, from 2.7 (2017) to 3.6 (2021) cases per 1,000 population with marked heterogeneity between areas. However, about 68% of the detected malaria cases were imported into Zanzibar. Malaria case follow-up and investigation increased from <70% in 2017 to 94% and 96% respectively, in 2021. The review noted a 3.7-fold increase of the health allocation in the country's budget, from 31.7 million USD (2017/18) to 117.3 million USD (2022/23) but malaria allocation remained low (<1%). The varying transmission levels in the islands suggest a need for strategic re-orientation of the elimination attempts from a national-wide to a sub-national agenda. We recommend increasing malaria allocation from the health budget to ensure sustainability of malaria elimination interventions.


Asunto(s)
Malaria , Humanos , Tanzanía/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Incidencia , Presupuestos , Manejo de Caso
17.
Malar J ; 11: 370, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23137141

RESUMEN

The Affordable Medicines Facility-malaria (AMFm) has put into place a bold financing plan for artemisinin-combination therapy in a pilot phase in seven countries covering half the population at risk of malaria in Africa. A report of the AMFm independent evaluation, conducted by ICF International and the London School of Hygiene and Tropical Medicine, describes the success of the programme in the pilot sites: Ghana, Kenya, Madagascar, Niger, Nigeria, Tanzania (mainland and Zanzibar) and Uganda, comparing availability and affordability of high-quality artemisinin-combination therapies before and after AMFm launched. Proof of concept was achieved: AMFm increased availability and kept prices low, meeting its initial, ambitious benchmarks in most settings. Despite this overwhelming success, opposition to the programme and dwindling resources for malaria control conspire to cripple or kill AMFm.


Asunto(s)
Antimaláricos/economía , Antimaláricos/uso terapéutico , Artemisininas/economía , Artemisininas/uso terapéutico , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Lactonas/economía , Lactonas/uso terapéutico , Malaria/tratamiento farmacológico , África , Quimioterapia Combinada/economía , Quimioterapia Combinada/métodos , Utilización de Medicamentos/estadística & datos numéricos , Humanos , Resultado del Tratamiento
18.
Lancet Glob Health ; 7(12): e1695-e1705, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31708150

RESUMEN

BACKGROUND: More timely estimates of malaria prevalence are needed to inform optimal control strategies and measure progress. Since 2014, Tanzania has implemented nationwide malaria screening for all pregnant women within the antenatal care system. We aimed to compare malaria test results during antenatal care to two population-based prevalence surveys in Tanzanian children aged 6-59 months to examine their potential in measuring malaria trends and progress towards elimination. METHODS: Malaria test results from pregnant women screened at their first antenatal care visits at health-care facilities (private and public) in all 184 districts of Tanzania between Jan 1, 2014, and Dec 31, 2017, were collected from the Health Management Information Systems and District Health Information System 2. We excluded facilities with no recorded antenatal care attendees during the time period. We standardised results to account for testing uptake and weighted them by the timing of two population-based surveys of childhood malaria prevalence done in 2015-16 (Demographic and Health Survey) and 2017 (Malaria Indicator Survey). We assessed regional-level correlation using Spearman's coefficient and assessed the consistency of monthly district-level prevalence ranking using Kendall's correlation coefficient. FINDINGS: Correlation between malaria prevalence at antenatal care and among children younger than 5 years was high (r≥0·83 for both surveys), although declines in prevalence at antenatal care were generally smaller than among children. Consistent heterogeneity (p<0·05) in antenatal care prevalence at the district level was evident in all but one region (Kilimanjaro). Data from antenatal care showed declining prevalence in three regions (Arusha, Kilimanjaro, and Manyara) where surveys estimated zero prevalence. INTERPRETATION: Routine antenatal care-based screening can be used to assess heterogeneity in transmission at finer resolution than population-based surveys, and provides sample sizes powered to detect changes, notably in areas of low transmission where surveys lack power. Declines in prevalence at antenatal care might lag behind those among children, highlighting the value of monitoring burden and continuing prevention efforts among pregnant women as transmission declines. The pregnancy-specific benefits and cost-effectiveness of antenatal care-based screening remain to be assessed. FUNDING: None.


Asunto(s)
Malaria/epidemiología , Tamizaje Masivo/estadística & datos numéricos , Complicaciones Parasitarias del Embarazo/epidemiología , Atención Prenatal/estadística & datos numéricos , Estudios Transversales , Femenino , Instituciones de Salud , Humanos , Embarazo , Prevalencia , Tanzanía/epidemiología , Adulto Joven
19.
PLoS Negl Trop Dis ; 4(5): e693, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20520797

RESUMEN

BACKGROUND: Dar es Salaam has an extensive drain network, mostly with inadequate water flow, blocked by waste, causing flooding after rainfall. The presence of Anopheles and Culex larvae is common, which is likely to impact the transmission of lymphatic filariasis and malaria by the resulting adult mosquito populations. However, the importance of drains as larval habitats remains unknown. METHODOLOGY: Data on mosquito larval habitats routinely collected by the Urban Malaria Control Program (UMCP) and a special drain survey conducted in 2006 were used to obtain a typology of habitats. Focusing on drains, logistic regression was used to evaluate potential factors impacting the presence of mosquito larvae. Spatial variation in the proportion of habitats that contained larvae was assessed through the local Moran's I indicator of spatial association. PRINCIPAL FINDINGS: More than 70% of larval habitats in Dar es Salaam were human-made. Aquatic habitats associated with agriculture had the highest proportion of Anopheles larvae presence and the second highest of Culex larvae presence. However, the majority of aquatic habitats were drains (42%), and therefore, 43% (1,364/3,149) of all culicine and 33% (320/976) of all anopheline positive habitats were drains. Compared with drains where water was flowing at normal velocity, the odds of finding Anopheles and Culex larvae were 8.8 and 6.3 (p<0.001) times larger, respectively, in drains with stagnant water. There was a positive association between vegetation and the presence of mosquito larvae (p<0.001). The proportion of habitats with mosquito larvae was spatially correlated. CONCLUSION: Restoring and maintaining drains in Dar es Salaam has the potential to eliminate more than 40% of all potential mosquito larval habitats that are currently treated with larvicides by the UMCP. The importance of human-made larval habitats for both lymphatic filariasis and malaria vectors underscores the need for a synergy between on-going control efforts of those diseases.


Asunto(s)
Anopheles/crecimiento & desarrollo , Culex/crecimiento & desarrollo , Ecosistema , Agricultura , Animales , Biología del Agua Dulce , Humanos , Larva/crecimiento & desarrollo , Control de Mosquitos/métodos , Tanzanía
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda