Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Opt Express ; 31(8): 12549-12561, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157412

RESUMEN

The light-matter interaction between plasmonic nanocavity modes and excitons at the nanometer scale is here addressed in the scanning tunneling microscope configuration where an MoSe2 monolayer is located between the tip and the substrate. We investigate by optical excitation the electromagnetic modes of this hybrid Au/MoSe2/Au tunneling junction using numerical simulations where electron tunneling and the anisotropic character of the MoSe2 layer are taken into account. In particular, we pointed out gap plasmon modes and Fano-type plasmon-exciton coupling taking place at the MoSe2/Au substrate interface. The spectral properties and spatial localization of these modes are studied as a function of the tunneling parameters and incident polarization.

2.
Nanotechnology ; 34(1)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36179662

RESUMEN

Active suspended membranes are an ideal test-bench for experimenting with novel laser geometries and principles. We show that adding thin AlGaAs barrier near the top and bottom Air/GaAs interfaces of the membrane significantly reduces the carriers non-radiative recombinations and decreases the threshold of test photonic crystal test lasers. We review the existing literature on photonic crystal membrane fabrication and propose an overview of the significant defects that can be induced by each fabrication step. Finally we propose a complete processing scheme that overcome most of these defects.

3.
Nanotechnology ; 30(16): 165101, 2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-30654336

RESUMEN

Description of the relationship between protein structure and function remains a primary focus in molecular biology, biochemistry, protein engineering and bioelectronics. Moreover, the investigation of the protein conformational changes after adhesion and dehydration is of importance to tackle problems related to the interaction of proteins with solid surfaces. In this paper the conformational changes of wild-type Discosoma recombinant red fluorescent proteins (DsRed) adhered on silver nanoparticles (AgNPs)-based nanocomposites are explored via surface-enhanced Raman scattering (SERS). Originality in the present approach is to work on dehydrated DsRed thin protein layers in link with natural conditions during drying. To enable the SERS effect, plasmonic substrates consisting of a single layer of AgNPs encapsulated by an ultra-thin silica cover layer were elaborated by plasma process. The achieved enhancement of the electromagnetic field in the vicinity of the AgNPs is as high as 105. This very strong enhancement factor allowed detecting Raman signals from discontinuous layers of DsRed issued from solution with protein concentration of only 80 nM. Three different conformations of the DsRed proteins after adhesion and dehydration on the plasmonic substrates were identified. It was found that the DsRed chromophore structure of the adsorbed proteins undergoes optically assisted chemical transformations when interacting with the optical beam, which leads to reversible transitions between the three different conformations. The proposed time-evolution scenario endorses the dynamical character of the relationship between protein structure and function. It also confirms that the conformational changes of proteins with strong internal coherence, like DsRed proteins, are reversible.


Asunto(s)
Antozoos/metabolismo , Proteínas Luminiscentes/química , Nanocompuestos/química , Plata/química , Animales , Desecación , Nanopartículas del Metal/química , Modelos Moleculares , Conformación Proteica , Espectrometría Raman , Propiedades de Superficie , Proteína Fluorescente Roja
4.
Opt Express ; 26(22): 29411-29423, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470105

RESUMEN

We report on the surface enhanced resonant Raman scattering (SERRS) in hybrid MoSe2@Au plasmonic-excitonic nanostructures, focusing on the situation where the localized surface plasmon resonance of Au nanodisks is finely tuned to the exciton absorption of monolayer MoSe2. Using a resonant excitation, we investigate the SERRS in MoSe2@Au and the resonant Raman scattering (RRS) in a MoSe2@SiO2 reference. Both optical responses are compared to the non-resonant Raman scattering signal, thus providing an estimate of the relative contributions from the localized surface plasmons and the confined excitons to the Raman scattering enhancement. We determine a SERRS/RRS enhancement factor exceeding one order of magnitude. Furthermore, using numerical simulations, we explore the optical near-field properties of the hybrid MoSe2@Au nanostructure and investigate the SERRS efficiency dependence on the nanodisk surface morphology and on the excitation wavelength. We demonstrate that a photothermal effect, due to the resonant plasmonic pumping of electron-hole pairs into the MoSe2 layer, and the surface roughness of the metallic nanostructures are the main limiting factors of the SERRS efficiency.

5.
Opt Lett ; 40(9): 2116-9, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25927799

RESUMEN

When the size of metal nanoparticles is smaller than typically 10 nm, their optical response becomes sensitive to both spatial dispersion and quantum size effects associated with the confinement of the conduction electrons inside the particle. In this Letter, we propose a nonlocal scheme to compute molecular decay rates near spherical nanoparticles which includes the electron-electron interactions through a simple model of electronic polarizabilities. The plasmonic particle is schematized by a dynamic dipolar polarizability α(NL)(ω), and the quantum system is characterized by a two-level system. In this scheme, the light matter interaction is described in terms of classical field susceptibilities. This theoretical framework could be extended to address the influence of nonlocality on the dynamics of quantum systems placed in the vicinity of nano-objects of arbitrary morphologies.

6.
Langmuir ; 31(4): 1362-7, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25563697

RESUMEN

Low size dispersity silver nanoparticles (ca. 6 nm) have been synthesized by the hydrogenolysis of silver amidinate in the presence of hexadecylamine. Combining NMR techniques with SERS and DFT modeling, it is possible to observe an original stabilization mechanism. Amidine moiety is strongly coordinated to the Ag(0) nanoparticles surface whereas HDA ligand is necessary to prevent agglomeration, although it is only weakly interacting with the surface.

7.
Adv Sci (Weinh) ; 11(7): e2305182, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072637

RESUMEN

The optical response of 2D layered perovskites is composed of multiple equally-spaced spectral features, often interpreted as phonon replicas, separated by an energy Δ ≃ 12 - 40 meV, depending upon the compound. Here the authors show that the characteristic energy spacing, seen in both absorption and emission, is correlated with a substantial scattering response above ≃ 200 cm-1 (≃ 25 meV) observed in resonant Raman. This peculiar high-frequency signal, which dominates both Stokes and anti-Stokes regions of the scattering spectra, possesses the characteristic spectral fingerprints of polarons. Notably, its spectral position is shifted away from the Rayleigh line, with a tail on the high energy side. The internal structure of the polaron consists of a series of equidistant signals separated by 25-32 cm-1 (3-4 meV), depending upon the compound, forming a polaron vibronic progression. The observed progression is characterized by a large Huang-Rhys factor (S > 6) for all of the 2D layered perovskites investigated here, indicative of a strong charge carrier - lattice coupling. The polaron binding energy spans a range ≃ 20-35 meV, which is corroborated by the temperature-dependent Raman scattering data. The investigation provides a complete understanding of the optical response of 2D layered perovskites via the direct observation of polaron vibronic progression. The understanding of polaronic effects in perovskites is essential, as it directly influences the suitability of these materials for future opto-electronic applications.

8.
Opt Express ; 21(4): 4551-9, 2013 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-23481988

RESUMEN

We show that the interaction between localized surface plasmons sustained by a metallic nano-antenna and delocalized phonons lying at the surface of an heteropolar semiconductor can generate a new class of hybrid electromagnetic modes. These plasphonic modes are investigated using an analytical model completed by accurate Green dyadic numerical simulations. When surface plasmon and surface phonon frequencies match, the optical resonances exhibit a large Rabi splitting typical of strongly interacting two-level systems. Based on numerical simulations of the electric near-field maps, we investigate the nature of the plaphonic excitations. In particular, we point out a strong local field enhancement boosted by the phononic surface. This effect is interpreted in terms of light harvesting by the plasmonic antenna from the phononic surface. We thus introduce the concept of active phononic surfaces that may be exploited for far-infared optoelectronic devices and sensors.


Asunto(s)
Luz , Modelos Teóricos , Refractometría/métodos , Dispersión de Radiación , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Fotones
9.
Nano Lett ; 11(2): 431-7, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21214216

RESUMEN

This work is devoted to the fundamental understanding of the interaction between acoustic vibrations and surface plasmons in metallic nano-objects. The acoustoplasmonic properties of coupled spherical gold nanoparticles and nanodisk trimers are investigated experimentally by optical transmission measurements and resonant Raman scattering experiments. For excitation close to resonance with the localized surface plasmons of the nanodisk trimers, we are able to detect several intense Raman bands generated by the spherical gold nanoparticles. On the basis of both vibrational dynamics calculations and Raman selection rules, the measured Raman bands are assigned to fundamental and overtones of the quadrupolar and breathing vibration modes of the spherical gold nanoparticles. Simulations of the electric near-field intensity maps performed at the Raman probe wavelengths showed strong localization of the optical energy in the vicinity of the nanodisk trimers, thus corroborating the role of the interaction between the acoustic vibrations of the spherical nanoparticles and the surface plasmons of the nanodisk trimers. Acoustic phonons surface enhanced Raman scattering is here demonstrated for the first time for such coupled plasmonic systems. This work paves the way to surface plasmon engineering for sensing the vibrational properties of nanoparticles.


Asunto(s)
Acústica , Oro/química , Modelos Químicos , Nanoestructuras/química , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Luz , Ensayo de Materiales , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Dispersión de Radiación
10.
Nano Lett ; 11(8): 3301-6, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21692453

RESUMEN

In this letter, the ultrafast vibrational dynamics of individual gold nanorings has been investigated by femtosecond transient absorption spectroscopy. Two acoustic vibration modes have been detected and identified. The influence of the mechanical coupling at the nanoparticle/substrate interface on the acoustic vibrations of the nano-objects is discussed. Moreover, by changing the environment of the nanoring, we provide a clear evidence of the impact of the surrounding medium on the damping of the acoustic vibrations. Such results are reported here for the first time on individual nanoparticles. This work points out a new sensing method based on the sensitivity of the acoustic vibration damping to the surrounding medium.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda