RESUMEN
Decision making is often driven by the subjective value of available options, a value which is formed through experience. To support this fundamental behavior, the brain must encode and maintain the subjective value. To investigate the area specificity and plasticity of value coding, we trained mice in a value-based decision task and imaged neural activity in 6 cortical areas with cellular resolution. History- and value-related signals were widespread across areas, but their strength and temporal patterns differed. In expert mice, the retrosplenial cortex (RSC) uniquely encoded history- and value-related signals with persistent population activity patterns across trials. This unique encoding of RSC emerged during task learning with a strong increase in more distant history signals. Acute inactivation of RSC selectively impaired the reward-history-based behavioral strategy. Our results indicate that RSC flexibly changes its history coding and persistently encodes value-related signals to support adaptive behaviors.
Asunto(s)
Conducta Animal/fisiología , Toma de Decisiones/fisiología , Giro del Cíngulo/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Ratones , Ratones TransgénicosRESUMEN
Feature-based attention has a spatially global effect, i.e., responses to stimuli that share features with an attended stimulus are enhanced not only at the attended location but throughout the visual field. However, how feature-based attention modulates cortical neural responses at unattended locations remains unclear. Here we used functional magnetic resonance imaging (fMRI) to examine this issue as human participants performed motion- (Experiment 1) and color- (Experiment 2) based attention tasks. Results indicated that, in both experiments, the respective visual processing areas (middle temporal area [MT+] for motion and V4 for color) as well as early visual, parietal, and prefrontal areas all showed the classic feature-based attention effect, with neural responses to the unattended stimulus significantly elevated when it shared the same feature with the attended stimulus. Effective connectivity analysis using dynamic causal modeling (DCM) showed that this spatially global effect in the respective visual processing areas (MT+ for motion and V4 for color), intraparietal sulcus (IPS), frontal eye field (FEF), medial frontal gyrus (mFG), and primary visual cortex (V1) was derived by feedback from the inferior frontal junction (IFJ). Complementary effective connectivity analysis using Granger causality modeling (GCM) confirmed that, in both experiments, the node with the highest outflow and netflow degree was IFJ, which was thus considered to be the source of the network. These results indicate a source for the spatially global effect of feature-based attention in the human prefrontal cortex.
Asunto(s)
Corteza Prefrontal/fisiología , Adulto , Atención/fisiología , Mapeo Encefálico , Percepción de Color/fisiología , Conectoma , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Modelos Psicológicos , Percepción de Movimiento/fisiología , Estimulación Luminosa , Corteza Visual/fisiología , Campos Visuales/fisiología , Adulto JovenRESUMEN
The normalization model of attention proposes that attention can affect performance by response- or contrast-gain changes, depending on the size of the stimulus and attention field. Here, we manipulated the attention field by emotional valence, negative faces versus positive faces, while holding stimulus size constant in a spatial cueing task. We observed changes in the cueing effect consonant with changes in response gain for negative faces and contrast gain for positive faces. Neuroimaging experiments confirmed that subjects' attention fields were narrowed for negative faces and broadened for positive faces. Importantly, across subjects, the self-reported emotional strength of negative faces and positive faces correlated, respectively, both with response- and contrast-gain changes and with primary visual cortex (V1) narrowed and broadened attention fields. Effective connectivity analysis showed that the emotional valence-dependent attention field was closely associated with feedback from the dorsolateral prefrontal cortex (DLPFC) to V1. These findings indicate a crucial involvement of DLPFC in the normalization processes of emotional attention.
Asunto(s)
Atención/fisiología , Emociones/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , PsicofísicaRESUMEN
Classic theories of object-based attention assume a single object of selection but real-world tasks, such as driving a car, often require attending to multiple objects simultaneously. However, whether object-based attention can operate on more than one object at a time remains unexplored. Here, we used functional magnetic resonance imaging (fMRI) to address this question as human participants performed object-based attention tasks that required simultaneous attention to two objects differing in either their features or locations. Simultaneous attention to two objects differing in features (face and house) did not show significantly different responses in the fusiform face area (FFA) or parahippocampal place area (PPA), respectively, compared to attending a single object (face or house), but did enhance the response in the inferior frontal gyrus (IFG). Simultaneous attention to two circular arcs differing in locations did not show significantly different responses in the primary visual cortex (V1) compared to attending a single circular arc, but did enhance the response in the intraparietal sulcus (IPS). These results suggest that object-based attention can simultaneously select at least two objects differing in their features or locations, processes mediated by the frontal and parietal cortex, respectively.
Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Reconocimiento Visual de Modelos/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto JovenRESUMEN
Non-coding RNA, including microRNA (miRNA) serves critical regulatory functions in the developing brain. The let-7 family of miRNAs has been shown to regulate neuronal differentiation, neural subtype specification, and synapse formation in animal models. However, the regulatory role of human let-7c (hsa-let-7c) in human neuronal development has yet to be examined. Let-7c is encoded on chromosome 21 in humans and therefore may be overexpressed in human brains in Trisomy 21 (T21), a complex neurodevelopmental disorder. Here, we employ recent developments in stem cell biology to show that hsa-let-7c mediates important regulatory epigenetic functions that control the development and functional activity of human induced neuronal cells (iNs). We show that overexpression of hsa-let-7c in human iNs derived from induced pluripotent stem (iPS), as well as embryonic stem (ES), cells leads to morphological as well as functional deficits including impaired neuronal morphologic development, synapse formation and synaptic strength, as well as a marked reduction of neuronal excitability. Importantly, we have assessed these findings over three independent genetic backgrounds, showing that some of these effects are subject to influence by background genetic variability with the most robust and reproducible effect being a striking reduction in spontaneous neural firing. Collectively, these results suggest an important function for let-7 family miRNAs in regulation of human neuronal development and raise implications for understanding the complex molecular etiology of neurodevelopmental disorders, such as T21, where let-7c gene dosage is increased.