Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Environ Sci Technol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137267

RESUMEN

Acute oral toxicity is currently not available for most polycyclic aromatic hydrocarbons (PAHs), especially their derivatives, because it is cost-prohibitive to experimentally determine all of them. Here, quantitative structure-activity relationship (QSAR) models using machine learning (ML) for predicting the toxicity of PAH derivatives were developed, based on oral toxicity data points of 788 individual substances of rats. Both the individual ML algorithm gradient boosting regression trees (GBRT) and the stacking ML algorithm (extreme gradient boosting + GBRT + random forest regression) provided the best prediction results with satisfactory determination coefficients for both cross-validation and the test set. It was found that those PAH derivatives with fewer polar hydrogens, more large-sized atoms, more branches, and lower polarizability have higher toxicity. Software based on the optimal ML-QSAR model was successfully developed to expand the application potential of the developed model, obtaining reliable prediction of pLD50 values and reference doses for 6893 external PAH derivatives. Among these chemicals, 472 were identified as moderately or highly toxic; 10 out of them had clear environment detection or use records. The findings provide valuable insights into the toxicity of PAHs and their derivatives, offering a standard platform for effectively evaluating chemical toxicity using ML-QSAR models.

2.
Environ Sci Technol ; 57(46): 18317-18328, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37186812

RESUMEN

Machine learning (ML) models were developed for understanding the root uptake of per- and polyfluoroalkyl substances (PFASs) under complex PFAS-crop-soil interactions. Three hundred root concentration factor (RCF) data points and 26 features associated with PFAS structures, crop properties, soil properties, and cultivation conditions were used for the model development. The optimal ML model, obtained by stratified sampling, Bayesian optimization, and 5-fold cross-validation, was explained by permutation feature importance, individual conditional expectation plot, and 3D interaction plot. The results showed that soil organic carbon contents, pH, chemical logP, soil PFAS concentration, root protein contents, and exposure time greatly affected the root uptake of PFASs with 0.43, 0.25, 0.10, 0.05, 0.05, and 0.05 of relative importance, respectively. Furthermore, these factors presented the key threshold ranges in favor of the PFAS uptake. Carbon-chain length was identified as the critical molecular structure affecting root uptake of PFASs with 0.12 of relative importance, based on the extended connectivity fingerprints. A user-friendly model was established with symbolic regression for accurately predicting RCF values of the PFASs (including branched PFAS isomerides). The present study provides a novel approach for profound insight into the uptake of PFASs by crops under complex PFAS-crop-soil interactions, aiming to ensure food safety and human health.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Suelo/química , Carbono , Teorema de Bayes , Fluorocarburos/análisis , Aprendizaje Automático , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Technol ; 57(42): 16053-16064, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37824517

RESUMEN

Rhizosphere microbiota are an important factor impacting plant uptake of pollutants. However, little is known about how microbial nitrogen (N) transformation in the rhizosphere affects the uptake and accumulation of antibiotics in plants. Here, we determined recruitment of N transformation functional bacteria upon ciprofloxacin (CIP) exposure, by comparing differences in assembly processes of both rhizospheric bacterial communities and N transformation between two choysum (Brassica parachinensis) varieties differing in CIP accumulation. The low accumulation variety (LAV) of CIP recruited more host bacteria (e.g., Nitrospiria and Nitrolancea) carrying nitrification genes (mainly nxrA) but fewer host bacteria carrying denitrification genes, especially narG, relative to the high accumulation variety (HAV) of CIP. The nxrA and narG abundance in the LAV rhizosphere were, respectively, 1.6-7.8 fold higher and 1.4-3.4 fold lower than those in the HAV rhizosphere. Considering that nitrate can decrease CIP uptake into choysum through competing for the proton motive force and energy, such specific bacteria recruitment in LAV favored the production and utilization of nitrate in its rhizosphere, thus limiting its CIP accumulation with 1.6-2.4 fold lower than the HAV. The findings give insight into the mechanism underlying low pollutant accumulation, filling the knowledge gap regarding the profound effects of rhizosphere microflora and N transformation processes on antibiotic accumulation in crops.


Asunto(s)
Brassica , Ciprofloxacina , Rizosfera , Nitratos , Nitrógeno/análisis , Antibacterianos , Bacterias/genética , Plantas , Suelo , Microbiología del Suelo
4.
Ecotoxicol Environ Saf ; 241: 113820, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36068748

RESUMEN

Understanding the fate and transport of polystyrene nanoparticles (PSNPs) in porous media under various conditions is necessary for evaluating and predicting environmental risks caused by microplastics. The transport kinetics of PSNPs are investigated by column experiment and numerical model. The surface of DLVO interaction energy is calculated to analyze and predict the adsorption and aggregation of PSNPs in porous media, which the critical ionic strength of PSNPs can be accurately investigated. The results of the DLVO energy surface suggest that when the concentration of Na+ increases from 1 mM to 50 mM, the DLVO energy barrier of PSNPs-silica sand (SS) decreases from 78.37 kT to 5.46 kT. As a result, PSNPs are easily adsorbed on the surface of SS and the mobility of PSNPs is reduced under the condition of a high concentration of Na+ (PSNPs recovery rate decreases from 62.16% to 3.65%). When the concentration of Ca2+ increases from 0.1 mM to 5 mM, the DLVO energy barrier of PSNPs-SS decreases from 12.10 kT to 1.90 kT, and PSNPs recovery rate decreases from 82.46% to 4.27%. Experimental and model results showed that PSNPs mobility is enhanced by increasing initial concentration, flow velocity and grain size of SS, while the mobility of PSNPs with larger particle diameter is lower. Regression analysis suggests that kinetic parameters related to PSNPs mobility are correlated with DLVO energy barriers. The environmental behavior and mechanism of PSNPs transport in porous media are further investigated in this study, which provides a scientific basis for the systematic and comprehensive evaluation of the environmental risk and ecological safety of nano-plastic particles in the groundwater system.


Asunto(s)
Microplásticos , Poliestirenos , Cinética , Concentración Osmolar , Plásticos , Porosidad , Arena , Dióxido de Silicio
5.
Environ Sci Technol ; 55(13): 8730-8741, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34169723

RESUMEN

Perfluorooctanesulfonate (PFOS) as an accumulative emerging persistent organic pollutant in crops poses severe threats to human health. Lettuce varieties that accumulate a lower amount of PFOS (low-accumulating crop variety, LACV) have been identified, but the regarding mechanisms remain unsolved. Here, rhizospheric activation, uptake, translocation, and compartmentalization of PFOS in LACV were investigated in comparison with those of high-accumulating crop variety (HACV) in terms of rhizospheric forms, transporters, and subcellular distributions of PFOS. The enhanced PFOS desorption from the rhizosphere soils by dissolved organic matter from root exudates was observed with weaker effect in LACV than in HACV. PFOS root uptake was controlled by a transporter-mediated passive process in which low activities of aquaporins and rapid-type anion channels were corrected with low expression levels of PIPs (PIP1-1 and PIP2-2) and ALMTs (ALMT10 and ALMT13) genes in LACV roots. Higher PFOS proportions in root cell walls and trophoplasts caused lower root-to-shoot transport in LACV. The ability to cope with PFOS toxicity to shoot cells was poorer in LACV relative to HACV since PFOS proportions were higher in chloroplasts but lower in vacuoles. Our findings provide novel insights into PFOS accumulation in lettuce and further understanding of multiprocess mechanisms of LACV.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes del Suelo , Fluorocarburos/análisis , Humanos , Lactuca , Suelo , Contaminantes del Suelo/análisis
6.
Ecotoxicol Environ Saf ; 228: 113005, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34839141

RESUMEN

Column experiments were conducted to investigate the effects of ion type, ion strength, humic acid (HA), and nanometer alumina (NA) particles on the transport of hexavalent chromium (HC) in saturated porous media. A one-dimensional model is developed to simulate the migration of HC affected by NA particles. The results show that nano-alumina particles would enhance the mobility of HC in saturated porous media. However, the influence of NA on the migration of HC in porous media is complex. When the concentration of NA reaches 30 mg/L, HC has minimum retention parameter and best mobility. The transport of HC also is affected by ion strength and ion type. Higher ionic strength would decrease the retention of HC and enhance its mobility. Compared with sodium ion, calcium ion has larger effects on the transport of HC. Moreover, HA can improve the mobility of HC in saturated porous media, but the corresponding promoting effect decreases with the increase of HA concentration. As nanometer contaminants and HC come into the subsurface environment, findings from this study elucidate the key factors and processes controlling the transport of HC in porous media, which can promote the prediction and assessment of HC in the groundwater system.

7.
Molecules ; 26(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435286

RESUMEN

The synergistic potential of plant essential oils (EOs) with other conventional and non-conventional antimicrobial agents is a promising strategy for increasing antimicrobial efficacy and controlling foodborne pathogens. Spoilage microorganisms are one of main concerns of seafood products, while the prevention of seafood spoilage principally requires exclusion or inactivation of microbial activity. This review provides a comprehensive overview of recent studies on the synergistic antimicrobial effect of EOs combined with other available chemicals (such as antibiotics, organic acids, and plant extracts) or physical methods (such as high hydrostatic pressure, irradiation, and vacuum-packaging) utilized to reduce the growth of foodborne pathogens and/or to extend the shelf-life of seafood products. This review highlights the synergistic ability of EOs when used as a seafood preservative, discovering the possible routes of the combined techniques for the development of a novel seafood preservation strategy.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Conservación de Alimentos , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Plantas/química , Antibacterianos/química , Microbiología de Alimentos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Aceites Volátiles/química , Extractos Vegetales/química
8.
Environ Sci Technol ; 54(20): 13046-13055, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33030897

RESUMEN

Perfluorooctanoic acid (PFOA) is bioaccumulative in crops. PFOA bioaccumulation potential varies largely among crop varieties. Root exudates are found to be associated with such variations. Concentrations of low-molecular-weight organic acids (LMWOAs) in root exudates from a PFOA-high-accumulation lettuce variety are observed significantly higher than those from PFOA-low-accumulation lettuce variety (p < 0.05). Root exudates and their LMWOAs components exert great influences on the linear sorption-desorption isotherms of PFOA in soils, thus activating PFOA and enhancing its bioavailability. Among root exudate components, oxalic acid is identified to play a key role in activating PFOA uptake, with >80% attribution. Oxalic acid at rhizospheric concentrations (0.02-0.5 mM) can effectively inhibit PFOA sorption to soils by decreasing hydrophobic force, electrostatic attraction, ligand exchange, and cation-bridge effect. Oxalic acid enhances dissolution of metallic ions, iron/aluminum oxides, and organic matters from soils and forms oxalate-metal complexes, based on nuclear magnetic resonance spectra, ultraviolet spectra, and analyses of metal ions, iron/aluminum organometallic complexes, and dissolved organic carbon. The findings not only reveal the activation process of PFOA in soils by root exudates, particularly oxalic acid at rhizospheric concentrations, but also give an insight into the mechanism of enhancing PFOA accumulation in lettuce varieties.


Asunto(s)
Fluorocarburos , Lactuca , Caprilatos , Exudados y Transudados , Ácido Oxálico
9.
Environ Res ; 186: 109611, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32668551

RESUMEN

Phthalic acid esters (PAEs) is a class of prevalent pollutants in agricultural soil, threating food safety through crop uptake and accumulation of PAEs. Accumulation of PAEs varies largely among crop species and cultivars. Nevertheless, how root exudates affect PAE bioavailability, dissipation, uptake and accumulation is still not well understood. In the present study, desorption and pot experiments were designed to investigate how root exudates from high-(Peizataifeng) and low-(Fengyousimiao) PAE accumulating rice cultivars affect soil PAE bioavailability, dissipation, and accumulation variation. Rice root exudates including low molecular weight organic acids (LMWOAs) of Peizataifeng and Fengyousimiao could enhance desorption of two typical PAE compounds, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), from aged soil to their available fractions by increasing soil dissolved organic carbon (DOC), thus improving their bioavailability in soil. Peizataifeng produced twice higher amounts of oxalic acid, critic acid and malonic acid in root exudates, and exhibited stronger effects on enhancing desorption and bioavailability of DBP and DEHP than Fengyousimiao. Higher (by about 50%) total organic carbon contents of root exudates from Peizataifeng led to higher (by 10-30%) soil microbial biomass carbon and nitrogen than Fengyousimiao, and thus promoted more PAE dissipation from soil than Fengyousimiao. Nevertheless, higher (by 20-50%) soil DOC and significantly higher PAE bioavailability in the soils planted Peizataifeng resulted in greater (by 53-93%) PAE accumulation in roots and shoots of Peizataifeng than Fengyousimiao, confirming by higher (by 1.82-3.48 folds) shoot and root bioconcentration factors of Peizataifeng than Fengyousimiao. This study reveals that the difference in root exudate extent and LMWOAs between Peizataifeng and Fengyousimiao differentiates PAE accumulation.


Asunto(s)
Oryza , Ácidos Ftálicos , Contaminantes del Suelo , Disponibilidad Biológica , Ésteres , Suelo , Contaminantes del Suelo/análisis
10.
Ecotoxicol Environ Saf ; 206: 111105, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32866887

RESUMEN

Soil is an important sink for perfluorooctane sulfonate (PFOS) that is a typical persistent organic pollutant with high toxicity. Understanding of PFOS sorption to various particle-size fractions of soil provides an insight into the mobility and bioavailability of PFOS in soil. This study evaluated kinetics, isotherms, and mechanisms of PFOS sorption to six soil particle-size fractions of paddy soil at environmentally relevant concentrations (0.01-1 µg/mL). The used soil particle-size fractions included coarse sand (120.4-724.4 mm), fine sand (45.7-316.2 mm), coarse silt (17.3-79.4 mm), fine silt (1.9-39.8 mm), clay (0.5-4.4 mm), and humic acid fractions (8.2-83.7 mm) labeled as F1~F6, respectively. PFOS sorption followed pseudo-second-order kinetics related to film diffusion and intraparticle diffusion, with speed-limiting phase acted by the latter. PFOS sorption isotherm data followed Freundlich model, with generally convex isotherms in larger size fractions (F1~F3) but concave isotherms in smaller size fractions (F4 and F5) and humic acid fraction (F6). Increasing organic matter content, Brunner-Emmet-Teller surface area, and smaller size fractions were conducive to PFOS sorption. Hydrophobic force, divalent metal ion-bridging effect, ligand exchange, hydrogen bonding, and protein-like interaction played roles in PFOS sorption. But hydrophobic force controlled the PFOS sorption, because its relevant organic matter governed the contribution of the soil fractions to the overall PFOS sorption. The larger size fractions dominated the PFOS sorption to the original soil because of their high mass percentages (~80%). This likely caused greater potential risks of PFOS migration into groundwater and bioaccumulation in crops at higher temperatures and ce values, based on their convex isotherms with an exothermic physical process.


Asunto(s)
Ácidos Alcanesulfónicos/química , Fluorocarburos/química , Contaminantes del Suelo/química , Suelo/química , Adsorción , Ácidos Alcanesulfónicos/análisis , Arcilla/química , Fluorocarburos/análisis , Sustancias Húmicas/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Tamaño de la Partícula , Contaminantes del Suelo/análisis , Termodinámica
11.
Int J Syst Evol Microbiol ; 69(7): 1986-1992, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31046894

RESUMEN

A Gram-stain-negative, aerobic, nitrogen-fixing bacterium, designated strain L461T, was isolated from leaves of Bryophyllum pinnatum growing at the South China Agricultural University. Phylogenetic analysis of the 16S rRNA gene sequence indicated it as a member of the genus Azotobacter closely related to Azotobacter beijerinckii JCM 20725T (97.82 % similarity) and Azotobacter chroococcum ATCC 9043T (97.34 %). Its major fatty acid components were C16 : 1 ω9c and C16 : 0. Its predominant isoprenoid quinone was Q-9. Its major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid, phospholipid and one unknown lipid. Its DNA G+C content was 64.9 mol% (Tm). DNA-DNA relatedness values between strain L461T and the reference strains of A. beijerinckii and A. chroococcum were 46.43 and 28.23 %, respectively. Biological and biochemical tests, protein patterns, genomic DNA fingerprinting, and comparison of cellular fatty acids distinguished strain L461T from the closely related Azotobacter species. Based on these data, the novel species Azotobacter bryophylli sp. nov. is proposed, with the type strain L461T (=KCTC 62195T=GDMCC 1.1250T).


Asunto(s)
Azotobacter/clasificación , Kalanchoe/microbiología , Filogenia , Azotobacter/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , Dermatoglifia del ADN , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , Hojas de la Planta/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
12.
J Environ Manage ; 248: 109321, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31394478

RESUMEN

The distribution and diastereomeric profiles of hexabromocyclododecanes (HBCDs, identified as persistent organic pollutants) in soil-vegetable system of open fields remain unknown. In this study, three main HBCD diastereoisomers (α-, ß-, and γ-HBCDs) were analyzed in paired soil and vegetable samples from vegetable farms in four cities (Guangzhou, Jiangmen, Huizhou, Foshan) of the Pearl River Delta region, Southern China. The sum concentrations of the three diastereoisomers (∑HBCDs) in soils varied from 0.99 to 18.4 ng/g (dry weight) with a mean of 5.77 ng/g, decreasing in the order of Jiangmen > Guangzhou > Huizhou > Foshan. The distributions of HBCDs in both soil and vegetable were diastereomer-specific, with γ-HBCD being predominant. The ∑HBCDs in vegetables ranged from 0.87 to 32.7 ng/g (dry weight) with a mean of 16.6 ng/g, generally higher than those of the corresponding soils. Thus bioconcentration factors (BCFs, the ratio of contaminant concentration in vegetable to that in soil) of HBCDs were generally greater than 1.0, implying higher accumulation in vegetable. The estimated daily intake (EDI) of ΣHBCDs via consumption of vegetables varied from 0.26 to 9.35 ng/kg bw/day with a mean of 3.60 ng/kg bw/day for adults and from 0.32 to 11.5 ng/kg bw/day with a mean of 4.41 ng/kg bw/day for Children, far lower than the oral reference dose (RfD, 2 × 105 ng/kg bw/day) proposed by US National Research Council. These results suggest that HBCD in the vegetables posed low health risk for the local population. These data are the first report on HBCD occurrence and health risk in soil-vegetable system of open fields.


Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Niño , China , Ciudades , Monitoreo del Ambiente , Humanos , Suelo , Verduras
13.
Bull Environ Contam Toxicol ; 102(4): 589-594, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30788561

RESUMEN

Cadmium (Cd) is one of the hazardous environmental pollutants, and it can be harmful to human health through consumption of food-plants capable of bioaccumulating Cd. Therefore, lowering cadmium accumulation in plants is highly desirable. Here, a rice cultivar 'Qisanzhan' was studied using differential display reverse transcription-polymerase chain reaction (DDRT-PCR). Fifty-six differentially expressed genes were found in the root tips of 4-leaf stage rice seedlings exposed to 4 and 12 h of 50 µmol/L Cd(NO3)2 in a nutrient solution using DDRT-PCR. Further validation using semi-quantitative RT-PCR showed that the expression patterns of 16 genes were consistent with those found in DDRT-PCR. These genes encode receptor-like protein kinase, pleiotropic drug resistance protein, aquaporin protein, plasma membrane ATPase, etc. The differentially genes identified here can be used to obtain a better understanding of the molecular mechanisms of Cd absorption and accumulation in plants.


Asunto(s)
Cadmio/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Oryza/genética , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/efectos de los fármacos , Plantones/metabolismo , Estrés Fisiológico/genética
14.
Environ Res ; 164: 417-429, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29573717

RESUMEN

Phthalates (PAEs) are extensively used as plasticizers and constitute one of the most frequently detected organic contaminants in the environment. With the deterioration of eco-environment in China during the past three decades, many studies on PAE occurrence in soils and their risk assessments have been conducted which allow us to carry out a fairly comprehensive assessment of soil PAE contamination on a nation-wide scale. This review combines the updated information available associated with PAE current levels, distribution patterns (including urban soil, rural or agricultural soil, seasonal and vertical variations), potential sources, and human health exposure. The levels of PAEs in soils of China are generally at the high end of the global range, and higher than the grade II limits of the Environmental Quality Standard for soil in China. The most abundant compounds, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), display obvious spatial distribution in different provinces. It is noted that urbanization and industrialization, application of plastic film (especially plastic film mulching in agricultural soil) and fertilizer are the major sources of PAEs in soil. Uptake of PAEs by crops, and human exposure to PAEs via ingestion of soil and vegetables are reviewed, with scientific gaps highlighted.


Asunto(s)
Ácidos Ftálicos , Contaminantes del Suelo , China , Humanos , Ácidos Ftálicos/análisis
15.
Ecotoxicol Environ Saf ; 163: 567-576, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30077154

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is a typical endocrine disrupting chemical with relatively high concentrations in agricultural soils of China. Here, a rhizobox experiment was conducted to investigate the variations in microbial community and DEHP dissipation among different soil rhizospheric compartments between low (Fengyousimiao) and high (Peizataifeng) DEHP-accumulating cultivars of rice (Oryza sativa L.) grown in DEHP spiked soil (0, 20, 100 mg/kg). The dissipation rates of DEHP in rhizospheric soils of Peizataifeng were generally significantly higher than those of Fengyousimiao, with the highest removal rate in 0-2 mm rhizosphere. The results of Illumina-HiSeq high-throughput sequencing revealed that both bacterial and fungal diversity and community structure were significantly different in rhizospheric soils of the two cultivars. DEHP dissipation rates in 0-2 mm rhizosphere of Peizataifeng were positively correlated with bacterial and fungal diversity. The relative abundance of DEHP-degrading bacterial genera Acinetobacter, Pseudomonas and Bacillus of Peizataifeng was generally higher than those in the same rhizospheric compartment of Fengyousimiao in DEHP treatments, resulting in different rhizospheric DEHP dissipation. Cultivation of Peizataifeng in agricultural soil is promising to facilitate DEHP dissipation and ensure safety of agricultural products.


Asunto(s)
Dietilhexil Ftalato/análisis , Oryza/microbiología , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo/análisis , Suelo/química , Agricultura , China , Dietilhexil Ftalato/química , Dietilhexil Ftalato/metabolismo , Oryza/química , Oryza/metabolismo , Ácidos Ftálicos , Contaminantes del Suelo/química
16.
Ecotoxicol Environ Saf ; 154: 84-91, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29454990

RESUMEN

Aniline aerofloat (AAF), a high-toxic organic flotation reagent, is widely used in mineral processing industry. However, little information on its environmental fate is available. AAF sorption to four types of agricultural soils at low concentrations (1-10 mg/L) was investigated using batch experiments. AAF sorption kinetics involved both boundary layer diffusion and intraparticle diffusion, following pseudo-second-order kinetics with equilibrium time within 120 min. Both Langmuir and Freundlich models fitted well the AAF sorption with the former better. Sorption of AAF to soils was a spontaneous and favorable physical sorption that was controlled by ion bridge effect and hydrophobic interaction that was related to van der Waals force and π-π coordination based on FTIR analyses. AAF sorption was remarkably affected by soil constituents, positively correlating with the contents of organic matter and clay. The relatively higher logKoc values (3.53-4.66) of AAF at environmental concentrations (1-5 mg/L) imply that soils are serving as a sink of AAF from beneficiation wastewater, posing great potential risks to environment and human health.


Asunto(s)
Compuestos de Anilina/análisis , Modelos Teóricos , Contaminantes del Suelo/análisis , Suelo/química , Adsorción , Agricultura , Silicatos de Aluminio/análisis , Arcilla , Difusión , Humanos , Sustancias Húmicas/análisis , Cinética , Aguas Residuales/química
17.
J Environ Manage ; 224: 1-9, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30025259

RESUMEN

Di-butyl phthalate (DBP) is a widely used plasticizer, recalcitrant and hazardous organic compound with high detection frequencies and concentrations in water and soil that pose a great threat to human health. A novel endphytic bacterium strain N-1 capable of efficiently degrading DBP and utilizing it as sole carbon source was isolated from Ageratum conyzoides. This bacterium was identified as Bacillus subtilis based on its morphological characteristics and 16S rDNA sequence analysis. Under the optimal culture conditions (pH 7.0, 30 °C), degradation percentage of DBP (12.5-100 mg/L) was up to 95% within five days, and its biodegradation half-life was less than 7.23 h. Degradation percentage of high DBP concentration (200 mg/L) was relatively lower (89%) with half-life of 56.8 h. DBP was degraded by Bacillus subtilis N-1 into mono-butyl phthalate and phthalic acid as evidenced by GC-MS analysis. Bioaugmentation of Youngia japonica plant slurry with strain N-1 greatly accelerated DBP dissipation with 97.5% removal percentage (higher by 47% than non-inoculation). The results highlighted that strain N-1 has great potential for bioremediation by plant-endophyte partnerships and for lowering PAE accumulation in crops.


Asunto(s)
Bacillus subtilis , Biodegradación Ambiental , Dibutil Ftalato/metabolismo , Ácidos Ftálicos/aislamiento & purificación , ADN Ribosómico , Endófitos
18.
Ecotoxicol Environ Saf ; 116: 50-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25768422

RESUMEN

Agricultural soil in China contains high levels of di-(2-ethylhexyl) phthalate (DEHP), especially in paddy-field soil of Guangdong province of China, but the accumulation and translocation of DEHP by rice (Oryza sativa L.) remains unknown. In the present study, twenty rice cultivars were cultivated in paddy soil spiked with DEHP, and variations in DEHP accumulation and translocation among various cultivars were investigated. Our results showed that DEHP concentrations in roots and shoots of different rice cultivars at four growth stages (i.e., ripening, tillering, jointing, and flowering stages) varied greatly from 0.26 to 11.8 mg/kg (dry weight, dw) and 0.40 to 7.58 mg/kg (dw), respectively. No obvious change over time was observed. The greatest variation in DEHP concentrations among the rice cultivars occurred at ripening stage, whereas the lowest variation at flowering stage. During ripening stage, the largest variation in DEHP concentrations among cultivars were observed in stems (varying from 0.35 to 13.2 mg/kg), whereas the least one was observed in roots (ranging from 1.01 to 5.72 mg/kg). Significant differences in DEHP concentrations in the roots, stems, leaves and grains of most rice cultivars were found. The translocation factors of DEHP from roots to stems or stems to leaves were higher than those from shoots to grains. Overall, cultivars Tianfengyou 316, Wuyou 308, and Peizataifeng, which contained low levels of DEHP in grains but high levels in shoots, were ideal cultivars for simultaneous production of safe food and phytoremediation of contaminated soil.


Asunto(s)
Dietilhexil Ftalato/metabolismo , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , China , Variación Genética , Genotipo , Oryza/genética , Oryza/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo
19.
Bioresour Technol ; 408: 131161, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067710

RESUMEN

Simultaneous biodegradation of multiple micropollutantslike polycyclic aromatic hydrocarbons (PAHs) and phthalates (PAEs) by microbial consortia remain unclear. Here, four distinct bacterial consortia capable of degrading PAHs and PAEs were domesticated from sludge and its composts. PAH-degrading consortium HS and PAE-degrading consortium EC2 displayed the highest degradation efficiencies for PAHs (37 %-99 %) and PAEs (98 %-99 %), respectively, being significantly higher than those of individual member strains. Consortia HS and EC2 could simultaneously degrade both PAHs and PAEs. Remarkably, a synthetic consortium Syn by co-culturing consortia HS and EC2 demonstrated proficient simultaneous biodegradation for both PAHs (65 %-98 %) and PAEs (91 %-97 %). These consortia changed their community structure with enriching pollutant-degrading genera and extracellular polymeric substance contents to promote simultaneous biodegradation of multiple pollutants. Moreover, consortium Syn significantly enhanced degradation of both PAHs and PAEs in soil and sludge. This study provides strong candidates for simultaneous bioremediation of complex polluted environments by PAHs and PAEs.


Asunto(s)
Biodegradación Ambiental , Consorcios Microbianos , Ácidos Ftálicos , Hidrocarburos Policíclicos Aromáticos , Aguas del Alcantarillado , Contaminantes del Suelo , Aguas del Alcantarillado/microbiología , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes del Suelo/metabolismo , Ácidos Ftálicos/metabolismo , Bacterias/metabolismo , Microbiología del Suelo
20.
Environ Pollut ; 359: 124758, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154881

RESUMEN

Due to the extensive use of plastic products and unreasonable disposal, nanoplastics contamination has become one of the important environmental problems that mankind must face. The composition and structure of porous media can determine the complexity and diversity of the transport behavior of nanoplastics. In this study, the influence of diatomite (DIA) on the nanoplastics transport in porous media is investigated by column experiments combined with XDLVO interaction energy and transport model. Results suggest that the recovery rates of unmodified polystyrene nanoparticles (PSNPs) and carboxyl-modified polystyrene nanoparticles (PSNPs-COOH) in the porous media containing DIA decreases compared with that in the pure quartz sand (QS), and the BTCs showed a "blocking" pattern. The presence of DIA inhibits the transport of both PSNPs and PSNPs-COOH, but the inhibition is not significant. This may be because the presence of DIA provides more favorable deposition sites for PSNPs and PSNPs-COOH to some extent. However, since DIA itself carries a certain negative charge, this can only play a role in compressing the double electric layer for PSNPs and PSNPs-COOH with the same negative charge, and cannot destabilize them. The migration capacity of PSNPs and PSNPs-COOH is strongest in the DIA-QS porous media at pH = 7, and is weak at pH = 9 and pH = 5. The inhibition of migration at pH = 9 can be attributed to the dissolution of the DIA surface under alkaline conditions and the formation of pore and defect structures, which provide more deposition sites for PSNPs and PSNPs-COOH. The presence of humic acid (HA) leads to an increase in the mobility of PSNPs and PSNPs-COOH, and the mobility is enhanced with HA concentration. The mobility of PSNPs and PSNPs-COOH in DIA-QS decreases with ionic valence and ionic strength, and PSNPs-COOH is more significantly inhibited compared to PSNPs.


Asunto(s)
Nanopartículas , Poliestirenos , Porosidad , Nanopartículas/química , Poliestirenos/química , Tierra de Diatomeas/química , Microplásticos/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda