Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(11): 1739-1745, 2023 Nov 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38432865

RESUMEN

Amyloidosis is a local or systemic disease caused by the deposition of misfolded proteins outside the cell, with rapid progression, and dire prognosis. Common types of cardiac amyloidosis are monoclonal immunoglobulin light chain amyloidosis (AL-CA) and transthyretin cardiac amyloidosis (ATTR-CA). Nuclear medicine examinations can be accurate, rapid, and non-invasive to help diagnose diseases and can effectively predict the prognosis of patients with CA. Technetium (99Tcm)-labeled bisphosphonate imaging has been included in the consensus of experts and has become the first-line imaging method for the diagnosis of ATTR-CA. 123I-metaiodoenzylguanidine (MIBG) as a norepinephrine analogue can effectively assess cardiac sympathetic innervation in patients with CA. Aß- amyloid imaging agents such as 11C-pittsburgh compound B and 18F-flubetaben are expected to be new techniques for diagnosing AL-CA and incorporating them into cardiac staging systems for AL-CA patients in the future. New imaging agents such as 18F-NaF has been widely used in the diagnosis, treatment response monitoring, and prognosis assessment of CA. Summarizing the research value of nuclide imaging in CA may provide new ideas for clinical realization of early detection of CA and accurate assessment of disease prognosis.


Asunto(s)
Amiloidosis , Humanos , Pronóstico , Cintigrafía , Consenso , Difosfonatos
2.
R Soc Open Sci ; 6(9): 190790, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31598306

RESUMEN

The presence of weak interlayers and groundwater are common adverse geological conditions in tunnels. To investigate the modes of failure of rock masses surrounding tunnels owing to weak interlayers and groundwater, model tests and numerical simulations were conducted in this study based on two cases, and a model that considers only the weak interlayer was conducted for comparison. Based on the tests, differences between two models in terms of rock pressure, displacement, cracks and strain were analysed. The results reveal that the presence of groundwater has a significant effect on the space-time distribution of stress, displacement and cracks in the surrounding rock. Furthermore, based on the numerical model, the seepage field was analysed in terms of pore water pressure, permeability and the seepage process to understand the joint action of groundwater and weak interlayer on the failure mechanism of tunnels. The results show that the groundwater and interlayer complement each other to induce the failure mode of the surrounding rock. The water accelerates slip in the interlayer and the development of cracks. Conversely, low strength, muddy weak interlayers serve as the channels of water flow, resulting in deformations and cracks at different locations and different failure modes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda