Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Neurogenetics ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39266892

RESUMEN

The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.

2.
Cell Biol Int ; 48(1): 3-19, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37947445

RESUMEN

Mesenchymal stem cells (MSCs) are recognized for their remarkable ability to differentiate into multiple cell types. They are also known to possess properties that can fight cancer, leading to attempts to modify MSCs for use in anticancer treatments. However, MSCs have also been found to participate in pathways that promote tumor growth. Many studies have been conducted to explore the potential of MSCs for clinical applications, but the results have been inconclusive, possibly due to the diverse nature of MSC populations. Furthermore, the conflicting roles of MSCs in inhibiting tumors and promoting tumor growth hinder their adaptation to anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in urological cancers such as bladder, prostate, and renal are not as well established, and data comparing them are still limited. MSCs hold significant promise as a vehicle for delivering anticancer agents and suicide genes to tumors. Presently, numerous studies have concentrated on the products derived from MSCs, such as extracellular vesicles (EVs), as a form of cell-free therapy. This work aimed to review and discuss the current knowledge of MSCs and their EVs in urological cancer therapy.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Neoplasias Urológicas , Masculino , Humanos , Vejiga Urinaria , Próstata , Riñón , Vesículas Extracelulares/metabolismo , Neoplasias Urológicas/terapia , Neoplasias Urológicas/metabolismo , Células Madre Mesenquimatosas/metabolismo
3.
Prostaglandins Other Lipid Mediat ; 175: 106901, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260819

RESUMEN

INTRODUCTION: Dyslipidemia with a considerable progression rate is a primary risk factor for CVDs if left untreated. Dietary interventions have explored the health influences of selenium on lipid profiles in adults, yet the findings remain contentious. This study seeks to determine if selenium supplementation can positively modify the lipid profile (total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL), and high-density lipoprotein cholesterol (HDL-C) in adults. METHODS: Using predefined keywords, we searched online databases, including Scopus, PubMed, Web of Science Core Collection, and Google Scholar, for relevant studies published from inception through July 2024. A random-effects meta-analysis was then employed to pool the weighted mean differences (WMD) and 95 % CI for outcomes assessed by a minimum of three studies. RESULTS: Initially 1205 studies were obtained out of which 25 RCTs were decided to be included for further analyses. Selenium supplementation reduced VLDL (WMD: -1.53; 95 % CI: -2.86, -0.20), but did not change TG (WMD: 1.12; 95 % CI: -4.51, 6.74), TC (WMD: -2.25; 95 % CI: -6.80, 2.29), LDL-C (WMD: 1.60; 95 % CI: -4.26, 7.46), and HDL-C levels (WMD: 0.98; 95 % CI: - 0.02, 1.98). CONCLUSION: Our study showed significantly reduced VLDL but limited effects were observed in other lipid indexes. More extensive RCTs are required globally to achieve a holistic comprehension of the connection between selenium and lipid profile.

4.
J Biochem Mol Toxicol ; 38(8): e23790, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39108137

RESUMEN

Pulmonary injury is one of the key restricting factors for the therapy of malignancies with chemotherapy or following radiotherapy for chest cancers. The lung is a sensitive organ to some severely toxic antitumor drugs, consisting of bleomycin and alkylating agents. Furthermore, treatment with radiotherapy may drive acute and late adverse impacts on the lung. The major consequences of radiotherapy and chemotherapy in the lung are pneumonitis and fibrosis. Pneumonitis may arise some months to a few years behind cancer therapy. However, fibrosis is a long-term effect that appears years after chemo/or radiotherapy. Several mechanisms such as oxidative stress and severe immune reactions are implicated in the progression of pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) is offered as a pivotal mechanism for lung fibrosis behind chemotherapy and radiotherapy. It seems that pulmonary fibrosis is the main consequence of EMT after chemo/radiotherapy. Several biological processes, consisting of the liberation of pro-inflammatory and pro-fibrosis molecules, oxidative stress, upregulation of nuclear factor of κB and Akt, epigenetic changes, and some others, may participate in EMT and pulmonary fibrosis behind cancer therapy. In this review, we aim to discuss how chemotherapy or radiotherapy may promote EMT and lung fibrosis. Furthermore, we review potential targets and effective agents to suppress EMT and lung fibrosis after cancer therapy.


Asunto(s)
Quimioradioterapia , Transición Epitelial-Mesenquimal , Fibrosis Pulmonar , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/etiología , Quimioradioterapia/efectos adversos , Animales , Estrés Oxidativo/efectos de los fármacos , Lesión Pulmonar/etiología , Lesión Pulmonar/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo
5.
Cell Biochem Funct ; 42(2): e3962, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491792

RESUMEN

Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell-cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Comunicación Celular , Microambiente Tumoral
6.
Biochem Genet ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103713

RESUMEN

Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.

7.
AAPS PharmSciTech ; 25(6): 140, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890191

RESUMEN

Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.


Asunto(s)
Antineoplásicos , Portadores de Fármacos , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Portadores de Fármacos/química , Nanopartículas/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Nanomedicina/métodos , Liposomas , Micelas , Distribución Tisular
8.
Mol Cancer ; 22(1): 169, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814270

RESUMEN

The use of nanotechnology has the potential to revolutionize the detection and treatment of cancer. Developments in protein engineering and materials science have led to the emergence of new nanoscale targeting techniques, which offer renewed hope for cancer patients. While several nanocarriers for medicinal purposes have been approved for human trials, only a few have been authorized for clinical use in targeting cancer cells. In this review, we analyze some of the authorized formulations and discuss the challenges of translating findings from the lab to the clinic. This study highlights the various nanocarriers and compounds that can be used for selective tumor targeting and the inherent difficulties in cancer therapy. Nanotechnology provides a promising platform for improving cancer detection and treatment in the future, but further research is needed to overcome the current limitations in clinical translation.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Nanotecnología/métodos , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos , Composición de Medicamentos
9.
Microb Pathog ; 180: 106156, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201635

RESUMEN

The monkeypox virus (MPOX) is an uncommon zoonotic illness brought on by an orthopoxvirus (OPXV). MPOX can occur with symptoms similar to smallpox. Since April 25, 2023, 110 nations have reported 87,113 confirmed cases and 111 fatalities. Moreover, the outspread prevalence of MPOX in Africa and a current outbreak of MPOX in the U.S. have made it clear that naturally occurring zoonotic OPXV infections remain a public health concern. Existing vaccines, though they provide cross-protection to MPOX, are not specific for the causative virus, and their effectiveness in the light of the current multi-country outbreak is still to be verified. Furthermore, as a sequel of the eradication and cessation of smallpox vaccination for four decades, MPOX found a possibility to re-emerge, but with distinct characteristics. The World Health Organization (WHO) suggested that nations use affordable MPOX vaccines within a framework of coordinated clinical effectiveness and safety evaluations. Vaccines administered in the smallpox control program and conferred immunity against MPOX. Currently, vaccines approved by WHO for use against MPOX are replicating (ACAM2000), low replicating (LC16m8), and non-replicating (MVA-BN). Although vaccines are accessible, investigations have demonstrated that smallpox vaccination is approximately 85% efficient in inhibiting MPOX. In addition, developing new vaccine methods against MPOX can help prevent this infection. To recognize the most efficient vaccine, it is essential to assess effects, including reactogenicity, safety, cytotoxicity effect, and vaccine-associated side effects, especially for high-risk and vulnerable people. Recently, several orthopoxvirus vaccines have been produced and are being evaluated. Hence, this review aims to provide an overview of the efforts dedicated to several types of vaccine candidates with different strategies for MPOX, including inactivated, live-attenuated, virus-like particles (VLPs), recombinant protein, nucleic acid, and nanoparticle-based vaccines, which are being developed and launched.


Asunto(s)
Mpox , Viruela , Humanos , Mpox/epidemiología , Mpox/prevención & control , Viruela/prevención & control , Virus Vaccinia , Vacunación , Desarrollo de Vacunas
10.
Arch Virol ; 168(1): 32, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604362

RESUMEN

No effective drugs against goatpox virus (GTPV) exist despite the high morbidity and mortality (up to 100%) caused by this virus. In this study, the antiviral activity of silver nanoparticles (AgNPs) against GTPV, a member of the genus Capripoxvirus, was evaluated. Piper betle leaf extract was used as a reducing agent during the biological synthesis of AgNPs from silver nitrate. The AgNPs were characterized using ultraviolet/visible (UV/vis) absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). AgNPs were tested at different concentrations as antiviral agents against GTPV, and the reduction in the median tissue culture infectious dose (TCID50/mL) was used to quantitate antiviral activity. AgNPs caused significant inhibition of GTPV replication by preventing virus entry into the host cell. Pre-treatment of cells with AgNPs caused a slight reduction in infectivity, but this did not significantly correlate with the effect on virus attachment. AgNPs also appeared to significantly reduce the viral genome copy number. This study demonstrates that the AgNPs are capable of inhibiting GTPV replication in vitro.


Asunto(s)
Nanopartículas del Metal , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nanopartículas del Metal/química , Plata/farmacología , Microscopía Electrónica de Transmisión , Antivirales/farmacología , Antibacterianos/farmacología
11.
Environ Res ; 233: 116490, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354932

RESUMEN

The multidisciplinary approaches in treatment of cancer appear to be essential in term of bringing benefits of several disciplines and their coordination in tumor elimination. Because of the biological and malignant features of cancer cells, they have ability of developing resistance to conventional therapies such as chemo- and radio-therapy. Pancreatic cancer (PC) is a malignant disease of gastrointestinal tract in which chemotherapy and radiotherapy are main tools in its treatment, and recently, nanocarriers have been emerged as promising structures in its therapy. The bioresponsive nanocarriers are able to respond to pH and redox, among others, in targeted delivery of cargo for specific treatment of PC. The loading drugs on the nanoparticles that can be synthetic or natural compounds, can help in more reduction in progression of PC through enhancing their intracellular accumulation in cancer cells. The encapsulation of genes in the nanoparticles can protect against degradation and promotes intracellular accumulation in tumor suppression. A new kind of therapy for cancer is phototherapy in which nanoparticles can stimulate both photothermal therapy and photodynamic therapy through hyperthermia and ROS overgeneration to trigger cell death in PC. Therefore, synergistic therapy of phototherapy with chemotherapy is performed in accelerating tumor suppression. One of the important functions of nanotechnology is selective targeting of PC cells in reducing side effects on normal cells. The nanostructures are capable of being surface functionalized with aptamers, proteins and antibodies to specifically target PC cells in suppressing their progression. Therefore, a specific therapy for PC is provided and future implications for diagnosis of PC is suggested.


Asunto(s)
Hipertermia Inducida , Nanopartículas Multifuncionales , Nanopartículas , Neoplasias , Neoplasias Pancreáticas , Humanos , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Fototerapia , Nanopartículas/química , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias Pancreáticas
12.
Microb Pathog ; 171: 105729, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36058411

RESUMEN

As of 2022, the global population has access to several mRNA and traditional inactivated vaccines. However, their effectiveness in preventing infection, hospitalization, and COVID-associated mortality in Jordan has yet to be evaluated. The purpose of this observational study was to evaluate the relative effectiveness of three approved vaccines against COVID-19 in a sample of the Jordanian population. The study was conducted between July 2021 and 2022 in a sample of adult patients presenting to hospitals across Jordan and receiving one of the three vaccines - Pfizer (BNT162b2), Astra Zeneca (ChAdOx1-S), or Sinopharm (BBIBP-CorV). Data were collected to measure the rates of infection without hospitalization, infection with hospitalization, and death. The sample included patients with one of the following chronic conditions: cardiovascular disease, respiratory disease, or diabetes. Primary data were obtained from patients' health records. The sample included 6132 adults from Jordan, with a mean age 52 ± 17 years. The rates of death in patients receiving two doses of any vaccine ranged between 0.175 and 2.77%, compared with 0.69-13.53% in patients receiving only one dose. The rates of hospitalization were 6-7.97% with two doses, compared to 7.98-25.13% with one dose. The rates of infection without hospitalization were significantly higher in the two-dose group (6-25.1%) compared with those who had received only one dose of any COVID-19 vaccine (0.69-10.61%). In conclusion, receiving two doses of a COVID-19 vaccine was associated with lower odds of mortality and hospitalization and higher odds of infection. More research is needed to evaluate the safety and efficacy of vaccines against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Anciano , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Persona de Mediana Edad , ARN Mensajero , SARS-CoV-2 , Vacunas de Productos Inactivados
13.
Int J Mol Sci ; 23(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35742992

RESUMEN

Newly designed series of indole-containing pyrazole analogs, pyrazolinylindoles, were synthesized, and their structures were confirmed based on the spectral data of the 1H NMR, 13C NMR, and HR-MS analyses. Preliminary anti-cancer activity testings were carried out by the National Cancer Institute, United States of America (NCI, USA). Compounds HD02, HD05, and HD12 demonstrated remarkable cytotoxic activities against nine categories of cancer types based cell line panels which included leukemia, colon, breast, melanoma, lungs, renal, prostate, CNS, and ovarian cancer cell lines. The highest cytotoxic effects were exhibited by the compounds HD02 [1-(5-(1-H-indol-3-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-phenylethanone], HD05 [1-(3-(4-chlorophenyl)-5-(1H-indol-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)-2-phenoxyethanone], and HD12 [(3-(4-chlorophenyl)-5-(1H-indol-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)(pyridin-4-yl)methanone] against some of the 56 types of NCI-based cell lines in different panels. Compound HD05 showed the maximum range of cancer cell growth inhibitions against all categories of the cell lines in all nine panels. On average, in comparison to the referral standard, imatinib, at a dose level of 10 µM, the HD05 showed significant activity against leukemia in the range of 78.76%, as compared to the imatinib at 9% of cancer cells' growth inhibitions. Molecular docking simulation studies were performed in silico on the epidermal growth factor receptor (EGFR) tyrosine kinase, in order to validate the activity.


Asunto(s)
Antineoplásicos , Leucemia , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB/metabolismo , Humanos , Mesilato de Imatinib/farmacología , Indoles/química , Indoles/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
14.
Yale J Biol Med ; 95(4): 495-506, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36568834

RESUMEN

Background: Antibiotic resistance in cystic fibrosis (CF) is a well-known phenomenon. However, the comprehensive epidemiological impact of antibiotic resistance in CF is not clearly documented. So, this meta-analysis evaluated the proportion rates of carbapenem resistance (imipenem, meropenem, and doripenem) in CF based on publication date (1979-2000, 2001-2010, and 2011-2021), continents, pathogens, and antimicrobial susceptibility testing (AST). Methods: We searched studies in PubMed, Scopus, and Web of Science (until April 2021). Statistical analyses were conducted using STATA software (version 14.0). Results: The 110 studies included in the analysis were performed in 25 countries and investigated 13,324 pathogens associated with CF. The overall proportion of imipenem, meropenem, and doripenem resistance in CF were 43% (95% CI 36-49), 48% (95% CI 40-57), 28% (95% CI 23-33), and 45% (95% CI 32-59), respectively. Our meta-analysis showed that trends of imipenem, meropenem, and doripenem-resistance had gradual decreases over time (1979-2021). This could be due to the limited clinical effectiveness of these antibiotics to treat CF cases over time. Among the opportunistic pathogens associated with CF, the highest carbapenem resistance rates were shown in Stenotrophomonas maltophilia, Burkholderia spp., Pseudomonas aeruginosa, and Staphylococcus aureus. The highest and lowest carbapenem resistance rates among P. aeruginosa in CF patients were shown against meropenem (23%) and doripenem (39%). Conclusions: We showed that trends of carbapenem resistance had decreased over time (1979-2021). This could be due to the limited clinical effectiveness of these antibiotics to treat CF cases over time. Plans should be directed to fight biofilm-associated infections and prevent the emergence of mutational resistance. Systematic surveillance for carbapenemase-producing pathogens in CF by molecular surveillance is necessitated.


Asunto(s)
Carbapenémicos , Fibrosis Quística , Humanos , Meropenem/farmacología , Doripenem , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Imipenem , Pseudomonas aeruginosa
15.
Microb Pathog ; 158: 105071, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34182075

RESUMEN

Avian influenza (AI) has become a disease of great importance for human and animal health. Beside adverse side effects, there is resistance mutation for about all the conventional drugs that target viral proteins. This study aimed to evaluate antiviral activity of silver nanoparticles combined with epigallocatechingallate (EGCG-AgNPs) and co-administered with zinc sulphate (Zn+2) as alternative treatment strategy to control AI H9N2. EGCG conjugated silver nanoparticles (EGCG-AgNPs) were synthesized. Virus propagation was performed using embryonated Specific-Pathogen-Free (SPF) hen's eggs. Viral EID50 titers were determined before and after treatments. The antiviral activity was determined as Log virucidal reduction. A commercial tetrazolium MTS assay kit was used to determine cytotoxicity. Results showed that 50 µM EGCG was the most significant concentration reduced the logEID50/mL of AI H9N2. Co-treatment with zinc sulphate (1.3 mg/mL) increased the EGCG antiviral effect. The most effective antiviral activity was obtained when combined EGCG-AgNPs with zinc sulphate with the greatest virucidal log reduction. No cytotoxic effect in Vero cells was observed among all of these forms at concentrations of interest used in this study. In conclusion, the topical application of EGCG-AgNPs/ZnSO4 demands additional antiviral strategies against H9N2 AI. This combination may prevent virus transmission, inhibit virus replication within neighboring cells and inhibit microbial resistance by making microbial adaptability very difficult.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Nanopartículas del Metal , Animales , Pollos , Chlorocebus aethiops , Femenino , Humanos , Plata/farmacología , Células Vero , Sulfato de Zinc
16.
Respir Res ; 22(1): 240, 2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34481508

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) complicating idiopathic pulmonary fibrosis (IPF) is associated to worse outcome. There is a great need for a non-invasive diagnostic modality to detect and evaluate the severity of pulmonary vascular disease (PVD). 99mTc-PulmoBind is a novel imaging agent that binds to the adrenomedullin (AM) receptor on the pulmonary microvascular endothelium. SPECT imaging employing the endothelial cell tracer 99mTc-PulmoBind was used to assess PVD associated with lung fibrosis. METHODS: Rats with selective right lung bleomycin-induced fibrosis were compared to control rats. SPECT imaging was performed after three weeks with 99mTc-PulmoBind and 99mTc-macroaggregates of albumin (MAA). PH and right ventricular (RV) function were assessed by echocardiography. Lung perfusion was evaluated by fluorescent microangiography. Lung AM receptor expression was measured by qPCR and by immunohistology. Relevance to human IPF was explored by measuring AM receptor expression in lung biopsies from IPF patients and healthy controls. RESULTS: The bleomycin group developed preferential right lung fibrosis with remodeling and reduced perfusion as assessed with fluorescent microangiography. These rats developed PH with RV hypertrophy and dysfunction. 99mTc-PulmoBind uptake was selectively reduced by 50% in the right lung and associated with reduced AM receptor expression, PH and RV hypertrophy. AM receptor was co-expressed with the endothelial cell protein CD31 in alveolar capillaries, and markedly reduced after bleomycin. Quantitative dynamic analysis of 99mTc-PulmoBind uptake in comparison to 99mTc-MAA revealed that the latter distributed only according to flow, with about 60% increased left lung uptake while left lung uptake of 99mTc-PulmoBind was not affected. Lung from human IPF patients showed important reduction in AM receptor expression closely associated with CD31. CONCLUSIONS: SPECT imaging with 99mTc-PulmoBind detects PVD and its severity in bleomycin-induced lung fibrosis. Reduced AM receptor expression in human IPF supports further clinical development of this imaging approach.


Asunto(s)
Adrenomedulina/análogos & derivados , Bleomicina/toxicidad , Endotelio Vascular/metabolismo , Hipertensión Pulmonar/metabolismo , Fragmentos de Péptidos/metabolismo , Fibrosis Pulmonar/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Adrenomedulina/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Endotelio Vascular/diagnóstico por imagen , Endotelio Vascular/efectos de los fármacos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/diagnóstico por imagen , Masculino , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/diagnóstico por imagen , Radiofármacos/metabolismo , Ratas , Ratas Wistar
17.
Eur Heart J ; 40(17): 1362-1373, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30395215

RESUMEN

AIMS: Calcific aortic valve stenosis (CAVS) is characterized by a fibrocalcific process. Studies have shown an association between CAVS and the activation of platelets. It is believed that shear stress associated with CAVS promotes the activation of platelets. However, whether platelets actively participate to the mineralization of the aortic valve (AV) and the progression of CAVS is presently unknown. To identify the role of platelets into the pathobiology of CAVS. METHODS AND RESULTS: Explanted control non-mineralized and mineralized AVs were examined by scanning electron microscope (SEM) for the presence of activated platelets. In-depth functional assays were carried out with isolated human valve interstitial cells (VICs) and platelets as well as in LDLR-/- apoB100/100 IGFII (IGFII) mice. Scanning electron microscope and immunogold markings for glycoprotein IIb/IIIa (GPIIb/IIIa) revealed the presence of platelet aggregates with fibrin in endothelium-denuded areas of CAVS. In isolated VICs, collagen-activated platelets induced an osteogenic programme. Platelet-derived adenosine diphosphate induced the release of autotaxin (ATX) by VICs. The binding of ATX to GPIIb/IIIa of platelets generated lysophosphatidic acid (LysoPA) with pro-osteogenic properties. In IGFII mice with CAVS, platelet aggregates were found at the surface of AVs. Administration of activated platelets to IGFII mice accelerated the development of CAVS by 2.1-fold, whereas a treatment with Ki16425, an antagonist of LysoPA receptors, prevented platelet-induced mineralization of the AV and the progression of CAVS. CONCLUSIONS: These findings suggest a novel role for platelets in the progression of CAVS.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Plaquetas/metabolismo , Calcinosis/metabolismo , Osteogénesis , Animales , Válvula Aórtica/metabolismo , Válvula Aórtica/ultraestructura , Apolipoproteína B-100/metabolismo , Progresión de la Enfermedad , Humanos , Integrina beta3/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Microscopía Electrónica de Rastreo/métodos , Hidrolasas Diéster Fosfóricas/metabolismo , Glicoproteína IIb de Membrana Plaquetaria/metabolismo
18.
J Community Health ; 39(3): 514-20, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24203408

RESUMEN

In 2012, we interviewed a population-based sample of 285 young adult residents (age 18-35 years) of the city of Bo, Sierra Leone, about their attitudes toward and experience with voluntary testing and counseling (VCT) for HIV. In total, 33% of the participants (44% of women and 25% of men) reported having been tested for HIV at least once. More than 85% of those not previously tested indicated a willingness to be tested in the near future, but untested participants were nearly twice as likely as tested participants to report fears about family/partner rejection, job loss, and other potential consequences of testing. More than 90% of participants expressed a high desire for testing privacy, and the majority reported a preference for VCT at a facility far from home where no one would know them. Social barriers to HIV testing remain a challenge for HIV prevention in Sierra Leone.


Asunto(s)
Actitud Frente a la Salud , Infecciones por VIH/diagnóstico , Aceptación de la Atención de Salud , Adolescente , Adulto , Estudios Transversales , Femenino , Encuestas de Atención de la Salud , Humanos , Masculino , Prioridad del Paciente , Investigación Cualitativa , Sierra Leona , Adulto Joven
19.
Vet World ; 17(2): 407-412, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38595656

RESUMEN

Background and Aim: Brucella melitensis is responsible for brucellosis, a highly contagious, life-threatening disease that has a high impact in low- and middle-income countries. This study aimed to compare silica nanoparticles (SiO-NPs) loaded with ciprofloxacin with silver nanoparticles (AgNPs) loaded with ciprofloxacin to evaluate the possible replacement of silver by silica to enhance biological activity and reduce cytotoxicity. Materials and Methods: SiO-NPs and AgNPs loaded with ciprofloxacin were characterized using ultraviolet spectroscopy, scanning electron microscopy, and dynamic light scattering microscopy for size demonstration and loading efficiency. Both nanoparticles were treated with B. melitensis Rev 1 to evaluate their biological activity. Nanoparticle toxicity was also evaluated using cytotoxicity and hemolysis assays. Results: SiO-NP was found to have a smaller size (80 nm) and higher loading efficiency with polydispersity index and zeta potential of 0.43 and 30.7 mV, respectively, compared to Ag-NP (180 nm and 0.62 and 28.3 mV, respectively). SiO-NP was potent with a minimum inhibitory concentration of 0.043 µg/mL compared to Ag-NP (0.049 µg/mL), with a lower cytotoxicity and hemolysis activity. Conclusion: SiO-NP, as a drug delivery system for ciprofloxacin, has better antimicrobial activity against B. melitensis with lower cytotoxicity and hemolysis activity. These results can be attributed to the enhanced physical characterization and better loading efficiency when compared to Ag-NP.

20.
J Mol Graph Model ; 133: 108858, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39232488

RESUMEN

Corynebacterium diphtheriae is a multi-drug resistant bacteria responsible for the life-threatening respiratory illness, diphtheria which can lead to severe Nervous system disorders, mainly infecting the lungs, heart, and kidneys if left untreated. In the current study, Corynebacterium diphtheriae MtrA response regulator protein was targeted, which regulates a two-component system of bacterial pathogenesis, and initiates DNA replication and cell division. In the current study a computational approach have been described for drug development against C. diphtheriae infections by inhibiting MtrA protein by small molecules acting as potential inhibitors against it. Molecular docking analysis of the equilibrated MtrA protein revealed compound-0.2970, compound-0.3029, and compound-0.3016 from Asinex Library as the promising inhibitors based on their lowest binding energies (-9.8 kJ/mol, -9.2 kJ/mol, and -8.9 kJ/mol), highest gold scores (40.53, 47.41, and 48.41), drug-likeness and pharmacokinetic properties. The MD simulation studies of the identified top-ranked inhibitors at 100 ns elucidated the system stability and fluctuations in the binding pocket of MtrA protein. Molecular Dynamics Simulations of the top three docked complexes further revealed that the standard binding pocket was retained ensuring the system stability. The rearrangements of H-bonds, van der Waals, pi-pi, and solid hydrophobic interactions were also observed. The binding free energy calculations (MM/PBSA and MM/GBSA) suggested a fundamental binding capability of the ligand to the target receptor MtrA. Therefore, the current study has provided excellent candidates acting as potent inhibitors for developing therapeutic drugs against C. diphtheriae infections. However, in vivo and in vitro animal experiments and accurate clinical trials are needed to validate the potential inhibitory effect of these compounds.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda