Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Environ Manage ; 356: 120728, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531138

RESUMEN

The microalgae-based wastewater treatment is a promising technique that contribute to achieving sustainable development goals (SDGs), such as SDG-6, "Clean Water and Sanitation". However, it is strongly influenced by the initial composition of wastewater. In this study, the impact of initial organics and nutrient concentration on the removal of total organic carbon (TOC), total carbon (TC), ammonium (NH4+), total nitrogen (TN), and phosphate (PO43-) from greywater using native polyculture microalgae was explored. Response surface methodology was employed along with two machine learning approaches, AdaBoost and XGBoost, to evaluate the interactions among three main factors: TOC, NH4+, and PO43-, and their effects on treatment efficiency. The C/N ratios for achieving maximum TOC and TC removal efficiency of 99.2% and 97.7% were determined to be 10.3, and 65.4-73.6, respectively. Notably, the N/P ratio did not significantly affect their removal. The highest NH4+ removal efficiency, reaching 96.2%, was attained at C/N ratios of 4.3, 24.0, 38.2, and 212.9, coupled with N/P ratios of 0.3, 2.6, and 23.4. Highest TN removal efficiency of 77.2% was achieved at C/N and N/P ratios of 12.2 and 2.0, respectively. Highest PO43- removal of 78.8% was obtained at N/P ratio 12.8. However, C/N ratio did not affect the removal efficiency. Maintaining these specified C/N and N/P ratios in the influent greywater would ensure that the treated greywater meets the required standards for various reuse applications, including flushing, groundwater recharge, and surface water discharge. The integration of RSM with AdaBoost and XGBoost provided accurate predictions of removal efficiencies. For all the models, XGBoost had the highest R2, and lowest MAE and MSE values. The cross validation of RSM models with AdaBoost and XGBoost further reinforced the reliability of these models in predicting treatment outcomes.


Asunto(s)
Microalgas , Fósforo , Carbono , Nitrógeno , Reproducibilidad de los Resultados , Agua , Biomasa
2.
J Environ Manage ; 356: 120711, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537468

RESUMEN

This study evaluated the environmental and economic impacts of substituting synthetic media with greywater for cultivating microalgae in the biofuel production process. Life cycle assessment (LCA) and technoeconomic assessment (TEA) were employed to compare the impacts of two scenarios - one containing bold's basal (BB) media and another containing greywater as growth mediums for microalgae cultivation. Scenarios 1 and 2 mitigated 1.74 and 2.14 kg CO2 per kg of biofuel production, respectively. Substituting BB media with greywater resulted in a 16.3% reduction in energy requirements, leading to a 79.3% increase in net energy recovered. LCA findings demonstrate a reduction in all seven environmental categories. TEA reveals that, despite a 21.7% higher capital investment, scenario 2 proves more economically viable due to a 39.8% lower operating cost and additional revenue from wastewater treatment and carbon credits. The minimum selling price of biofuel dropped from Rs 73.5/kg to Rs 36.5/kg, highlighting the economic and environmental advantages of substituting BB media with greywater in microalgal biofuel production.


Asunto(s)
Biocombustibles , Microalgas , Animales , Carbono , Medios de Cultivo , Estadios del Ciclo de Vida , Biomasa
3.
Bioresour Technol ; 388: 129666, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37648069

RESUMEN

Biochar was produced from polyculture microalgae cultivated in greywater using microwave pyrolysis. The highest biochar yield and fixed carbon content of 49.9% and 68.7% were obtained at microwave power (P) of 800 W and reaction time (T) of 8.6 min. The developed quadratic models, 166.96 - 0.23P - 3.87 T - 3.49 x10-3PT + 1.73 x10-4P2 + 0.13 T2 and - 73.79 + 0.29P + 1.86 T - 1.80 x10-4P2 could predict biochar yield and fixed carbon content respectively with errors of 6.2 and 7.9%. The volatile matter (VM), fixed carbon (FC), and high heating value (HHV) of the biomass were 69.2%. 23.4% and 17.6 MJ/Kg, respectively. VM, FC, and HHV for biochar obtained at optimum conditions were 20.2%, 68.7%, and 28.3 MJ/Kg, respectively. The process had a net positive energy balance of 11.32 MJ/Kg and energy efficiency of 1.76. This study paves the way for biochar production from greywater-grown microalgae, contributing to waste valorization and energy sustainability.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36692649

RESUMEN

Organics and nutrient removal studies are rarely done using polyculture microalgae, and that too in outdoor conditions, as they are often not deemed effective for wastewater treatment purposes. This study examined the organics and nutrient removal efficiency of polyculture microalgae cultivated in greywater. The reactor was operated in outdoor conditions. Hence, it was subjected to natural pH and temperature variations. A growth rate of 0.05 g L-1 day-1 was observed for temperatures up to 37 °C, beyond which the growth rate declined by 0.07 g L-1 day-1. During the treatment, the pH of the system was observed to be between 7.4 and 8.4. However, the growth rate would again pick up (0.05 g L-1 day-1) when the pH and temperature moved towards the optimum range, indicating that the polycultures adapt very quickly to their environment. The maximum biomass concentration reached 0.82 gL-1. The highest removal efficiency of organic carbon, ammonia, and phosphate was 80.7, 61.9, and 58.4%, respectively. Nitrate and nitrite concentrations remained ≤ 1.3 mgL-1 and ≤ 2 mgL-1, respectively, indicating the absence of nitrification/denitrification and ammonia volatilization. The mass balance of microalgae indicated that the primary removal mechanism of nitrogen and phosphorus removal was assimilation by the microalgae. The study proved polyculture microalgae to be as effective as some monoculture species in wastewater treatment, which require costlier controlled growth conditions. The high organics and nutrient removal by polycultures in outdoor conditions could pave the way to reducing wastewater treatment costs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda