Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 299(3): 102976, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738790

RESUMEN

Feline infectious peritonitis (FIP) is a serious viral illness in cats, caused by feline coronavirus. Once a cat develops clinical FIP, the prognosis is poor. The effective treatment strategy for coronavirus infections with immunopathological complications such as SARS-CoV-2, MERS, and FIP is focused on antiviral and immunomodulatory agents to inhibit virus replication and enhance the protective immune response. In this article we report the binding and conformational alteration of feline alphacoronavirus (FCoV) nucleocapsid protein by a novel compound K31. K31 noncompetitively inhibited the interaction between the purified nucleocapsid protein and the synthetic 5' terminus of viral genomic RNA in vitro. K31 was well tolerated by cells and inhibited FCoV replication in cell culture with a selective index of 115. A single dose of K31inhibited FCoV replication to an undetectable level in 24 h post treatment. K31 did not affect the virus entry to the host cell but inhibited the postentry steps of virus replication. The nucleocapsid protein forms ribonucleocapsid in association with the viral genomic RNA that serves as a template for transcription and replication of the viral genome. Our results show that K31 treatment disrupted the structural integrity of ribonucleocapsid in virus-infected cells. After the COVID-19 pandemic, most of the antiviral drug development strategies have focused on RdRp and proteases encoded by the viral genome. Our results have shown that nucleocapsid protein is a druggable target for anticoronavirus drug discovery.


Asunto(s)
Antivirales , Coronavirus Felino , Peritonitis Infecciosa Felina , Proteínas de la Nucleocápside , Replicación Viral , Animales , Gatos , Antivirales/farmacología , Antivirales/uso terapéutico , Técnicas de Cultivo de Célula , Coronavirus Felino/efectos de los fármacos , Coronavirus Felino/fisiología , Peritonitis Infecciosa Felina/tratamiento farmacológico , ARN Viral/genética , Replicación Viral/efectos de los fármacos
2.
Life (Basel) ; 13(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37895430

RESUMEN

Tick-borne diseases (TBDs) have become a significant public health concern in the United States over the past few decades. The increasing incidence and geographical spread of these diseases have prompted the implementation of robust surveillance systems to monitor their prevalence, distribution, and impact on human health. This comprehensive review describes key disease features with the geographical distribution of all known tick-borne pathogens in the United States, along with examining disease surveillance efforts, focusing on strategies, challenges, and advancements. Surveillance methods include passive and active surveillance, laboratory-based surveillance, sentinel surveillance, and a One Health approach. Key surveillance systems, such as the National Notifiable Diseases Surveillance System (NNDSS), TickNET, and the Tick-Borne Disease Laboratory Network (TBDLN), are discussed. Data collection and reporting challenges, such as underreporting and misdiagnosis, are highlighted. The review addresses challenges, including lack of standardization, surveillance in non-human hosts, and data integration. Innovations encompass molecular techniques, syndromic surveillance, and tick surveillance programs. Implications for public health cover prevention strategies, early detection, treatment, and public education. Future directions emphasize enhanced surveillance networks, integrated vector management, research priorities, and policy implications. This review enhances understanding of TBD surveillance, aiding in informed decision-making for effective disease prevention and control. By understanding the current surveillance landscape, public health officials, researchers, and policymakers can make informed decisions to mitigate the burden of (TBDs).

3.
Cancers (Basel) ; 13(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298603

RESUMEN

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda