RESUMEN
Superfluid helium nanodroplets are an ideal environment for the formation of metastable, self-organized dopant nanostructures. However, the presence of vortices often hinders their formation. Here, we demonstrate the generation of vortex-free helium nanodroplets and explore the size range in which they can be produced. From x-ray diffraction images of xenon-doped droplets, we identify that single compact structures, assigned to vortex-free aggregation, prevail up to 10^{8} atoms per droplet. This finding builds the basis for exploring the assembly of far-from-equilibrium nanostructures at low temperatures.
RESUMEN
Chronic inflammation is a contributing factor to most life-shortening human diseases. However, the molecular and cellular mechanisms that sustain chronic inflammatory responses remain poorly understood, making it difficult to treat this deleterious condition. Using a mouse model of age-dependent inflammation that results from a deficiency in miR-146a, we demonstrate that miR-155 contributed to the progressive inflammatory disease that emerged as Mir146a(-/-) mice grew older. Upon analyzing lymphocytes from inflamed versus healthy middle-aged mice, we found elevated numbers of T follicular helper (Tfh) cells, germinal center (GC) B cells, and autoantibodies, all occurring in a miR-155-dependent manner. Further, Cd4-cre Mir155(fl/fl) mice were generated and demonstrated that miR-155 functions in T cells, in addition to its established role in B cells, to promote humoral immunity in a variety of contexts. Taken together, our study discovers that miR-146a and miR-155 counterregulate Tfh cell development that drives aberrant GC reactions during chronic inflammation.
Asunto(s)
Centro Germinal/inmunología , Inflamación/inmunología , MicroARNs/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Traslado Adoptivo , Animales , Autoanticuerpos/biosíntesis , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Antígenos CD4/biosíntesis , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Antígeno 2 Relacionado con Fos/genética , Centro Germinal/citología , Inmunidad Humoral , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Interferencia de ARN , ARN Interferente PequeñoRESUMEN
The relaxation dynamics of electronically excited 3He and 4He clusters and droplets is investigated using time-correlated near-infrared and visible (NIR/VIS) fluorescence excitation spectroscopy. A rich data set spanning a wide range of cluster and droplet sizes is produced. The spectral features broadly follow the vacuum ultraviolet excitation (VUV) spectra. However, when the NIR/VIS spectra are normalised to the VUV fluorescence, regions with distinctly different cluster size and isotope dependence are identified, enabling deeper insight into the relaxation mechanism. Particle density, location of atomic-like states and their principal quantum number, n, are found to play an important role in the relaxation. For states with n = 3 and higher, only energy within the surface region is transferred to excited atoms which are subsequently ejected from the surface and fluoresce in vacuum. For states with n = 2, energy from the entire region within clusters and droplets is transferred to the surface, leading to the ejection of excited atoms and excimers. Here, the energy is transferred by excitation hopping, which competes with radiative and non-radiative decay, making ejection and NIR/VIS fluorescence inefficient in increasingly larger droplets.
RESUMEN
The role of dysfunction of the single ventricle in Fontan failure is incompletely understood. We aimed to evaluate hemodynamic responses to preload increase in Fontan circulation, to determine whether circulatory limitations in different locations identified by experimental preload increase are associated with cardiorespiratory fitness (CRF), and to assess the impact of left versus right ventricular morphology. In 38 consecutive patients (median age = 16.6 years, 16 females), heart catheterization was supplemented with a rapid 5-mL/kg body weight volume expansion. Central venous pressure (CVP), ventricular end-diastolic pressure (VEDP), and peak systolic pressure were averaged for 15â30 s, 45â120 s, and 4â6 min (steady state), respectively. CRF was assessed by peak oxygen consumption (VO2peak) and ventilatory threshold (VT). Median CVP increased from 13 mmHg at baseline to 14.5 mmHg (p < 0.001) at steady state. CVP increased by more than 20% in eight patients. Median VEDP increased from 10 mmHg at baseline to 11.5 mmHg (p < 0.001). Ten patients had elevated VEDP at steady state, and in 21, VEDP increased more than 20%. The transpulmonary pressure difference (CVPâVEDP) and CVP were consistently higher in patients with right ventricular morphology across repeated measurements. CVP at any stage was associated with VO2peak and VT. VEDP after volume expansion was associated with VT. Preload challenge demonstrates the limitations beyond baseline measurements. Elevation of both CVP and VEDP are associated with impaired CRF. Transpulmonary flow limitation was more pronounced in right ventricular morphology. Ventricular dysfunction may contribute to functional impairment after Fontan operation in young adulthood.ClinicalTrials.gov identifier NCT02378857.
Asunto(s)
Capacidad Cardiovascular , Procedimiento de Fontan , Adolescente , Adulto , Femenino , Humanos , Estudios Retrospectivos , Adulto JovenRESUMEN
INTRODUCTION: To investigate quality of life and mental health after Fontan completion, we aimed to characterise outcomes in a representative group of adolescent patients. The study was part of the pre-transition clinical work-up in adolescents with Fontan-type palliation of univentricular CHD. The programme covers the entire paediatric Fontan patient population in Norway. METHODS: Our cross-sectional study included 42 adolescents with Fontan circulation aged 15-18. We recruited a control group of 29 healthy peers. Quality of life was measured by the Pediatric Quality of Life Inventory Questionnaire, while mental health was assessed with the Strength and Difficulties Questionnaire. RESULTS: Fontan patients scored lower than healthy controls on the Pediatric Quality of Life Inventory total (p = 0.004), the physical (p < 0.001) and social (p = 0.001) functioning subscale, and the Strength and Difficulties Questionnaire subscale of emotional symptoms (p = 0.035). Compared to two of the healthy teens (7%), seven patients (16%) in the Fontan group scored as having impaired mental health (p = 0.224). The female/male ratio for individuals with impaired health was 7:2 (p = 0.003). CONCLUSIONS: Compared to healthy controls, adolescents after Fontan-type palliation in Norway have good health-related quality of life and mental health, despite having slightly lower score than healthy individuals, mainly in physical domains and school functioning. Compared to healthy controls and healthy teenagers, these adolescents have somewhat more emotional problems, and compared to male patients, female patients more often have impaired mental health.
Asunto(s)
Procedimiento de Fontan , Cardiopatías Congénitas , Adolescente , Niño , Estudios Transversales , Femenino , Estado de Salud , Humanos , Masculino , Calidad de Vida , Encuestas y CuestionariosRESUMEN
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by abnormal extracellular aggregates of amyloid-ß and intraneuronal hyperphosphorylated tau tangles and neuropil threads. Microglia, the tissue-resident macrophages of the central nervous system (CNS), are important for CNS homeostasis and implicated in AD pathology. In amyloid mouse models, a phagocytic/activated microglia phenotype has been identified. How increasing levels of amyloid-ß and tau pathology affect human microglia transcriptional profiles is unknown. Here, we performed snRNAseq on 482,472 nuclei from non-demented control brains and AD brains containing only amyloid-ß plaques or both amyloid-ß plaques and tau pathology. Within the microglia population, distinct expression profiles were identified of which two were AD pathology-associated. The phagocytic/activated AD1-microglia population abundance strongly correlated with tissue amyloid-ß load and localized to amyloid-ß plaques. The AD2-microglia abundance strongly correlated with tissue phospho-tau load and these microglia were more abundant in samples with overt tau pathology. This full characterization of human disease-associated microglia phenotypes provides new insights in the pathophysiological role of microglia in AD and offers new targets for microglia-state-specific therapeutic strategies.
Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Microglía/patología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Humanos , MasculinoRESUMEN
BACKGROUND: Children with Fontan circulation are at risk of developing hepatic fibrosis/cirrhosis. Reliable noninvasive monitoring techniques are lacking or under development. OBJECTIVE: To investigate surrogate indicators of hepatic fibrosis in adolescents with Fontan circulation by evaluating hepatic magnetic resonance (MR) T1 mapping and extracellular volume fraction measurements compared to US shear-wave elastography. MATERIALS AND METHODS: We analyzed hepatic native T1 times and extracellular volume fractions with modified Look-Locker inversion recovery. Liver stiffness was analyzed with shear-wave elastography. We compared results between 45 pediatric patients ages 16.7±0.6 years with Fontan circulation and 15 healthy controls ages 19.2±1.2 years. Measurements were correlated to clinical and hemodynamic data from cardiac catheterization. RESULTS: MR mapping was successful in 35/45 patients, revealing higher hepatic T1 times (774±44 ms) than in controls (632±52 ms; P<0.001) and higher extracellular volume fractions (47.4±5.0%) than in controls (34.6±3.8%; P<0.001). Liver stiffness was 1.91±0.13 m/s in patients vs. 1.20±0.10 m/s in controls (P<0.001). Native T1 times correlated with central venous pressures (r=0.5, P=0.007). Native T1 was not correlated with elastography in patients (r=0.2, P=0.1) or controls (r = -0.3, P=0.3). Extracellular volume fraction was correlated with elastography in patients (r=0.5, P=0.005) but not in controls (r=0.2, P=0.6). CONCLUSION: Increased hepatic MR relaxometry and shear-wave elastography values in adolescents with Fontan circulation suggested the presence of hepatic fibrosis or congestion. Central venous pressure was related to T1 times. Changes were detected differently with MR relaxometry and elastography; thus, these techniques should not be used interchangeably in monitoring hepatic fibrosis.
Asunto(s)
Diagnóstico por Imagen de Elasticidad , Procedimiento de Fontan , Hepatopatías , Adolescente , Adulto , Niño , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Hepatopatías/patología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Adulto JovenRESUMEN
A four- and a half-month-old girl with severe dilated cardiomyopathy due to neonatal enterovirus myocarditis, treated with diuretics and milrinone for the past 4 months, was infected with SARS-CoV-2. The disease course was characterised by high fever and gastrointestinal symptoms. Cardiac function, as measured by echocardiography, remained stable. The treatment focused on maintaining a normal heart rate and a stable fluid balance. In children with severe underlying cardiac disease, even a mild SARS-CoV-2 infection can require close monitoring and compound treatment.
Asunto(s)
COVID-19/fisiopatología , Cardiomiopatía Dilatada/fisiopatología , Diarrea/fisiopatología , Fiebre/fisiopatología , Taquicardia/fisiopatología , Taquipnea/fisiopatología , Disfunción Ventricular Izquierda/fisiopatología , Vómitos/fisiopatología , COVID-19/complicaciones , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/metabolismo , Cardiotónicos/uso terapéutico , Diuréticos/uso terapéutico , Ecocardiografía , Infecciones por Enterovirus/complicaciones , Femenino , Frecuencia Cardíaca , Trasplante de Corazón , Humanos , Lactante , Milrinona/uso terapéutico , Miocarditis/complicaciones , Péptido Natriurético Encefálico/metabolismo , Fragmentos de Péptidos/metabolismo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Troponina T/metabolismo , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo , Listas de Espera , Equilibrio HidroelectrolíticoRESUMEN
Ischemic preconditioning (IPC) is an experimental phenomenon in which a subthreshold ischemic insult applied to the brain reduces damage caused by a subsequent more severe ischemic episode. Identifying key molecular and cellular mediators of IPC will provide critical information needed to develop novel therapies for stroke. Here we report that the transcriptomic response of acutely isolated preconditioned cortical microglia is dominated by marked upregulation of genes involved in cell cycle activation and cellular proliferation. Notably, this transcriptional response occurs in the absence of cortical infarction. We employed ex vivo flow cytometry, immunofluorescent microscopy, and quantitative stereology methods on brain tissue to evaluate microglia proliferation following IPC. Using cellular colocalization of microglial (Iba1) and proliferation (Ki67 and BrdU) markers, we observed a localized increase in the number of microglia and proliferating microglia within the preconditioned hemicortex at 72, but not 24, hours post-IPC. Our quantification demonstrated that the IPC-induced increase in total microglia was due entirely to proliferation. Furthermore, microglia in the preconditioned hemisphere had altered morphology and increased soma volumes, indicative of an activated phenotype. Using transgenic mouse models with either fractalkine receptor (CX3CR1)-haploinsufficiency or systemic type I interferon signaling loss, we determined that microglial proliferation after IPC is dependent on fractalkine signaling but independent of type I interferon signaling. These findings suggest there are multiple distinct targetable signaling pathways in microglia, including CX3CR1-dependent proliferation that may be involved in IPC-mediated protection.
Asunto(s)
Ciclo Celular/fisiología , Corteza Cerebral/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Precondicionamiento Isquémico/métodos , Microglía/metabolismo , Transcriptoma/fisiología , Animales , Proliferación Celular/fisiología , Corteza Cerebral/patología , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Heart transplantation has become standard of care for pediatric patients with either end-stage heart failure or inoperable congenital heart defects. Despite increasing surgical complexity and overall volume, however, annual transplant rates remain largely unchanged. Data demonstrating pediatric donor heart refusal rates of 50% suggest optimizing donor utilization is critical. This review evaluated the impact of donor characteristics surrounding the time of death on pediatric heart transplant recipient outcomes. METHODS: An extensive literature review was performed to identify articles focused on donor characteristics surrounding the time of death and their impact on pediatric heart transplant recipient outcomes. RESULTS: Potential pediatric heart transplant recipient institutions commonly receive data from seven different donor death-related categories with which to determine organ acceptance: cause of death, need for CPR, serum troponin, inotrope exposure, projected donor ischemia time, electrocardiographic, and echocardiographic results. Although DITs up to 8 hours have been reported with comparable recipient outcomes, most data support minimizing this period to <4 hours. CVA as a cause of death may be associated with decreased recipient survival but is rare in the pediatric population. Otherwise, however, in the setting of an acceptable donor heart with a normal echocardiogram, none of the other data categories surrounding donor death negatively impact pediatric heart transplant recipient survival. CONCLUSIONS: Echocardiographic evaluation is the most important donor clinical information following declaration of brain death provided to potential recipient institutions. Considering its relative importance, every effort should be made to allow direct image visualization.
Asunto(s)
Selección de Donante/métodos , Insuficiencia Cardíaca/cirugía , Trasplante de Corazón , Donantes de Tejidos , Adolescente , Biomarcadores/sangre , Reanimación Cardiopulmonar/métodos , Cardiotónicos/uso terapéutico , Causas de Muerte , Niño , Preescolar , Isquemia Fría/estadística & datos numéricos , Ecocardiografía , Electrocardiografía , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/mortalidad , Humanos , Lactante , Recién Nacido , Factores de Riesgo , Resultado del Tratamiento , Troponina/sangre , Isquemia Tibia/estadística & datos numéricosRESUMEN
Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA-binding protein genes. Here, we show that extensive down-regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS-causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re-organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , MicroARNs/biosíntesis , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/patología , Animales , Secuencia de Bases , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/metabolismo , Regulación hacia Abajo , Evaluación Preclínica de Medicamentos , Enoxacino/farmacología , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Neuronas Motoras/metabolismo , Interferencia de ARN , Procesamiento Postranscripcional del ARN , Ribonucleasa III/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/genética , Superóxido Dismutasa-1RESUMEN
We present 2p core-level spectra of size-selected aluminum and silicon cluster cations from soft X-ray photoionization efficiency curves and density functional theory. The experimental and theoretical results are in very good quantitative agreement and allow for geometric structure determination. New ground state geometries for Al12+, Si15+, Si16+, and Si19+ are proposed on this basis. The chemical shifts of the 2p electron binding energies reveal a substantial difference for aluminum and silicon clusters: while in aluminum the 2p electron binding energy decreases with increasing coordination number, no such correlation was observed for silicon. The 2p binding energy shifts in clusters of both elements differ strongly from those of the corresponding bulk matter. For aluminum clusters, the core-level shifts between outer shell atoms and the encapsulated atom are of opposite sign and one order of magnitude larger than the corresponding core-level shift between surface and bulk atoms in the solid. For silicon clusters, the core-level shifts are of the same order of magnitude in clusters and in bulk silicon but no obvious correlation of chemical shift and bond length, as present for reconstructed silicon surfaces, are observed.
RESUMEN
Innate immune signaling is important in the pathophysiology of ischemia/reperfusion (stroke)-induced injury and recovery. Several lines of evidence support a central role for microglia in these processes. Recent work has identified Toll-like receptors (TLRs) and type I interferon (IFN) signaling in both ischemia/reperfusion-induced brain injury and ischemic preconditioning-mediated neuroprotection. To determine the effects of "ischemia/reperfusion-like" conditions on microglia, we performed genomic analyses on wild-type (WT) and TLR4-/- cultured microglia after sequential exposure to hypoxia/hypoglycemia and normoxia/normoglycemia (H/H-N/N). We observed increased expression of type 1 IFN-stimulated genes (ISGs) as the predominant transcriptomal feature of H/H-N/N-exposed WT, but not TLR4-/-, microglia. Microarray analysis on ex vivo sorted microglia from ipsilateral male mouse cortex after a transient in vivo ischemic pulse also demonstrated robust expression of ISGs. Type 1 IFNs, including the IFN-αs and IFN-ß, activate the interferon-α/ß receptor (IFNAR) complex. We confirmed both in vitro H/H-N/N- and in vivo ischemia/reperfusion-induced microglial ISG responses by quantitative real-time PCR and demonstrated that both were dependent on IFNAR1. We characterized the effects of hypoxia/hypoglycemia on phosphorylation of signal transducer and activator of transcription 1 (STAT1), release of type 1 IFNs, and surface expression of IFNAR1 in microglia. We demonstrated that IFN-ß induces dose-dependent secretion of ISG chemokines in cultured microglia and robust ISG expression in microglia both in vitro and in vivo Finally, we demonstrated that the microglial ISG chemokine responses to TLR4 agonists were dependent on TLR4 and IFNAR1. Together, these data suggest novel ischemia/reperfusion-induced pathways for both TLR4-dependent and -independent, IFNAR1-dependent, type 1 IFN signaling in microglia.SIGNIFICANCE STATEMENT Stroke is the fifth leading cause of death in the United States and is a leading cause of serious long-term disability worldwide. Innate immune responses are critical in stroke pathophysiology, and microglia are key cellular effectors in the CNS response to ischemia/reperfusion. Using a transcriptional analysis approach, we identified a robust interferon (IFN)-stimulated gene response within microglia exposed to ischemia/reperfusion in both in vitro and in vivo experimental paradigms. Using a number of complementary techniques, we have demonstrated that these responses are dependent on innate immune signaling components including Toll-like receptor-4 and type I IFNs. We have also elucidated several novel ischemia/reperfusion-induced microglial signaling mechanisms.
Asunto(s)
Isquemia Encefálica/metabolismo , Interferones/farmacología , Microglía/metabolismo , Receptor de Interferón alfa y beta/biosíntesis , Daño por Reperfusión/metabolismo , Receptor Toll-Like 4/deficiencia , Animales , Animales Recién Nacidos , Isquemia Encefálica/genética , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Receptor de Interferón alfa y beta/genética , Daño por Reperfusión/genética , Receptor Toll-Like 4/genéticaRESUMEN
Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafast complex light-induced dynamics on the relevant time scales, the multi-purpose end-station CAMP at the free-electron laser FLASH has been complemented by the novel multilayer-mirror-based split-and-delay unit DESC (DElay Stage for CAMP) for time-resolved experiments. XUV double-pulses with delays adjustable from zero femtoseconds up to 650â picoseconds are generated by reflecting under near-normal incidence, exceeding the time range accessible with existing XUV split-and-delay units. Procedures to establish temporal and spatial overlap of the two pulses in CAMP are presented, with emphasis on the optimization of the spatial overlap at long time-delays via time-dependent features, for example in ion spectra of atomic clusters.
RESUMEN
The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump-probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning.
RESUMEN
A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large data set allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale.
RESUMEN
We previously demonstrated an abnormally high right ventricular systolic pressure response to exercise in 50% of adolescents operated on for isolated ventricular septal defect. The present study investigated the prevalence of abnormal right ventricular systolic pressure response in 20 adult (age 30-45 years) patients who underwent surgery for early ventricular septal defect closure and its association with impaired ventricular function, pulmonary function, or exercise capacity. The patients underwent cardiopulmonary tests, including exercise stress echocardiography. Five of 19 patients (26%) presented an abnormal right ventricular systolic pressure response to exercise ⩾ 52 mmHg. Right ventricular systolic function was mixed, with normal tricuspid annular plane systolic excursion and fractional area change, but abnormal tricuspid annular systolic motion velocity (median 6.7 cm/second) and isovolumetric acceleration (median 0.8 m/second2). Left ventricular systolic and diastolic function was normal at rest as measured by the peak systolic velocity of the lateral wall and isovolumic acceleration, early diastolic velocity, and ratio of early diastolic flow to tissue velocity, except for ejection fraction (median 53%). The myocardial performance index was abnormal for both the left and right ventricle. Peak oxygen uptake was normal (mean z score -0.4, 95% CI -2.8-0.3). There was no association between an abnormal right ventricular systolic pressure response during exercise and right or left ventricular function, pulmonary function, or exercise capacity. Abnormal right ventricular pressure response is not more frequent in adult patients compared with adolescents. This does not support the theory of progressive pulmonary vascular disease following closure of left-to-right shunts.
Asunto(s)
Frecuencia Cardíaca , Defectos del Tabique Interventricular/diagnóstico por imagen , Defectos del Tabique Interventricular/fisiopatología , Función Ventricular , Adulto , Ecocardiografía , Prueba de Esfuerzo , Femenino , Defectos del Tabique Interventricular/cirugía , Humanos , Masculino , Persona de Mediana Edad , Contracción Miocárdica , Noruega , Adulto JovenRESUMEN
Recent theoretical work has identified functionalized diamondoids as promising candidates for the tailoring of fluorescent nanomaterials. However, experiments confirming that optical gap tuning can be achieved through functionalization have, up until now, found only systems where fluorescence is quenched. We address this shortcoming by investigating a series of methylated adamantanes. For the first time, a class of functionalized diamondoids is shown to fluoresce in the gas phase. In order to understand the evolution of the optical and electronic structure properties with degree of functionalization, photoelectron spectroscopy was used to map the occupied valence electronic structure, while absorption and fluorescence spectroscopies yielded information about the unoccupied electronic structure and postexcitation relaxation behavior. The resulting spectra were modeled by (time-dependent) density functional theory. These results show that it is possible to overcome fluorescence quenching when functionalizing diamondoids and represent a significant step toward tailoring the electronic structure of these and other semiconductor particles in a manner suitable to applications.
RESUMEN
Stroke is the leading cause of serious long-term disability and the fifth leading cause of death in the United States. Treatment options for stroke are few in number and limited in efficacy. Neuroinflammation mediated by microglia and infiltrating peripheral immune cells is a major component of stroke pathophysiology. Interfering with the inflammation cascade after stroke holds the promise to modulate stroke outcome. The calcium activated potassium channel KCa3.1 is expressed selectively in the injured CNS by microglia. KCa3.1 function has been implicated in pro-inflammatory activation of microglia and there is recent literature suggesting that this channel is important in the pathophysiology of ischemia/reperfusion (stroke) related brain injury. Here we describe the potential of repurposing Senicapoc, a KCa3.1 inhibitor, to intervene in the inflammation cascade that follows ischemia/reperfusion.