Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 288(8): 5861-72, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23303184

RESUMEN

Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the -7 to -4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/metabolismo , Glicósido Hidrolasas/fisiología , Phanerochaete/metabolismo , Árboles/microbiología , Trichoderma/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocombustibles , Celulasa/química , Celulasa/metabolismo , Celulosa/metabolismo , Simulación por Computador , Cristalografía por Rayos X/métodos , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Hypocrea/metabolismo , Ligandos , Conformación Molecular , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
2.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2356-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195749

RESUMEN

Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) play a key role in biomass recycling in nature. They are typically the most abundant enzymes expressed by potent cellulolytic fungi, and are also responsible for the majority of hydrolytic potential in enzyme cocktails for industrial processing of plant biomass. The thermostability of the enzyme is an important parameter for industrial utilization. In this study, Cel7 enzymes from different fungi were expressed in a fungal host and assayed for thermostability, including Hypocrea jecorina Cel7A as a reference. The most stable of the homologues, Humicola grisea var. thermoidea Cel7A, exhibits a 10°C higher melting temperature (T(m) of 72.5°C) and showed a 4-5 times higher initial hydrolysis rate than H. jecorina Cel7A on phosphoric acid-swollen cellulose and showed the best performance of the tested enzymes on pretreated corn stover at elevated temperature (65°C, 24 h). The enzyme shares 57% sequence identity with H. jecorina Cel7A and consists of a GH7 catalytic module connected by a linker to a C-terminal CBM1 carbohydrate-binding module. The crystal structure of the H. grisea var. thermoidea Cel7A catalytic module (1.8 Šresolution; R(work) and R(free) of 0.16 and 0.21, respectively) is similar to those of other GH7 CBHs. The deviations of several loops along the cellulose-binding path between the two molecules in the asymmetric unit indicate higher flexibility than in the less thermostable H. jecorina Cel7A.


Asunto(s)
Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Sordariales/enzimología , Secuencia de Aminoácidos , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Clonación Molecular , Cristalografía por Rayos X , Estabilidad de Enzimas , Genes Fúngicos , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
3.
FEBS J ; 290(2): 379-399, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35997626

RESUMEN

Cellobiohydrolases (CBHs) in the glycoside hydrolase family 7 (GH7) (EC3.2.1.176) are the major cellulose degrading enzymes both in industrial settings and in the context of carbon cycling in nature. Small carbohydrate conjugates such as p-nitrophenyl-ß-d-cellobioside (pNPC), p-nitrophenyl-ß-d-lactoside (pNPL) and methylumbelliferyl-ß-d-cellobioside have commonly been used in colorimetric and fluorometric assays for analysing activity of these enzymes. Despite the similar nature of these compounds the kinetics of their enzymatic hydrolysis vary greatly between the different compounds as well as among different enzymes within the GH7 family. Through enzyme kinetics, crystallographic structure determination, molecular dynamics simulations, and fluorometric binding studies using the closely related compound o-nitrophenyl-ß-d-cellobioside (oNPC), in this work we examine the different hydrolysis characteristics of these compounds on two model enzymes of this class, TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium. Protein crystal structures of the E212Q mutant of TrCel7A with pNPC and pNPL, and the wildtype TrCel7A with oNPC, reveal that non-productive binding at the product site is the dominating binding mode for these compounds. Enzyme kinetics results suggest the strength of non-productive binding is a key determinant for the activity characteristics on these substrates, with PcCel7D consistently showing higher turnover rates (kcat ) than TrCel7A, but higher Michaelis-Menten (KM ) constants as well. Furthermore, oNPC turned out to be useful as an active-site probe for fluorometric determination of the dissociation constant for cellobiose on TrCel7A but could not be utilized for the same purpose on PcCel7D, likely due to strong binding to an unknown site outside the active site.


Asunto(s)
Celulasa , Trichoderma , Celulosa 1,4-beta-Celobiosidasa/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Compuestos Cromogénicos , Celulosa/metabolismo , Simulación de Dinámica Molecular , Cinética , Celulasa/metabolismo
4.
FEBS J ; 282(11): 2167-77, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25765184

RESUMEN

UNLABELLED: The filamentous fungus Hypocrea jecorina (anamorph of Trichoderma reesei) is the predominant source of enzymes for industrial saccharification of lignocellulose biomass. The major enzyme, cellobiohydrolase Cel7A, constitutes nearly half of the total protein in the secretome. The performance of such enzymes is susceptible to inhibition by compounds liberated by physico-chemical pre-treatment if the biomass is kept unwashed. Xylan and xylo-oligosaccharides (XOS) have been proposed to play a key role in inhibition of cellobiohydrolases of glycoside hydrolase family 7. To elucidate the mechanism behind this inhibition at a molecular level, we used X-ray crystallography to determine structures of H. jecorina Cel7A in complex with XOS. Structures with xylotriose, xylotetraose and xylopentaose revealed a predominant binding mode at the entrance of the substrate-binding tunnel of the enzyme, in which each xylose residue is shifted ~ 2.4 Å towards the catalytic center compared with binding of cello-oligosaccharides. Furthermore, partial occupancy of two consecutive xylose residues at subsites -2 and -1 suggests an alternative binding mode for XOS in the vicinity of the catalytic center. Interestingly, the -1 xylosyl unit exhibits an open aldehyde conformation in one of the structures and a ring-closed pyranoside in another complex. Complementary inhibition studies with p-nitrophenyl lactoside as substrate indicate mixed inhibition rather than pure competitive inhibition. DATABASE: The atomic coordinates and structure factors are available in the Protein Data Bank under accession number 4D5I (H. jecorina Cel7A E212Q variant, complex with xylotriose), 4D5J (H. jecorina Cel7A E217Q variant, complex with xylotriose), 4D5O (H. jecorina Cel7A E212Q variant, complex with xylopentaose), 4D5P (H. jecorina Cel7A E217Q variant, complex with xylopentaose), 4D5Q (wild-type H. jecorina Cel7A, complex with xylopentaose) and 4D5V (H. jecorina Cel7A E217Q variant, complex with xylotetraose).


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/química , Proteínas Fúngicas/química , Xilanos/química , Dominio Catalítico , Celulosa 1,4-beta-Celobiosidasa/antagonistas & inhibidores , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inhibidores , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Unión Proteica , Trichoderma/enzimología
5.
Bioresour Technol ; 102(6): 4449-55, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21256738

RESUMEN

Using standard laboratory equipment, thermochemically pretreated oat straw was enzymatically saccharified and fermented to ethanol, and after removal of ethanol the remaining material was subjected to biogas digestion. A detailed mass balance calculation shows that, for steam explosion pretreatment, this combined ethanol fermentation and biogas digestion converts 85-87% of the higher heating value (HHV) of holocellulose (cellulose and hemicellulose) in the oat straw into biofuel energy. The energy (HHV) yield of the produced ethanol and methane was 9.5-9.8 MJ/(kg dry oat straw), which is 28-34% higher than direct biogas digestion that yielded 7.3-7.4 MJ/(kg dry oat straw). The rate of biogas formation from the fermentation residues was also higher than from the corresponding pretreated but unfermented oat straw, indicating that the biogas digestion could be terminated after only 24 days. This suggests that the ethanol process acts as an additional pretreatment for the biogas process.


Asunto(s)
Avena/química , Biocombustibles/análisis , Etanol/metabolismo , Fermentación , Vapor , Residuos/análisis , Acetatos/análisis , Carbohidratos/análisis , Glicerol/análisis , Metano/análisis , Solubilidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda