Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Crit Care ; 20(1): 311, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27716370

RESUMEN

BACKGROUND: Impaired microcirculatory perfusion and tissue oxygenation during critical illness are associated with adverse outcome. The aim of this study was to detect alterations in tissue oxygenation or microvascular reactivity and their ability to predict outcome in critically ill patients using thenar near-infrared spectroscopy (NIRS) with a vascular occlusion test (VOT). METHODS: Prospective observational study in critically ill adults admitted to a 12-bed intensive care unit (ICU) of a University Hospital. NIRS with a VOT (using a 40 % tissue oxygen saturation (StO2) target) was applied daily until discharge from the ICU or death. A group of healthy volunteers were evaluated in a single session. During occlusion, StO2 downslope was measured separately for the first (downslope 1) and last part (downslope 2) of the desaturation curve. The difference between downslope 2 and 1 was calculated (delta-downslope). The upslope and area of the hyperaemic phase (receive operating characteristic (ROC) area under the curve (AUC) of StO2) were calculated, reflecting microvascular reactivity. Outcomes were ICU and 90-day mortality. RESULTS: Patients (n = 89) had altered downslopes and upslopes compared to healthy volunteers (n = 27). Mean delta-downslope was higher in ICU non-survivors (2.8 (0.4, 3.8) %/minute versus 0.4 (-0.8, 1.8) in survivors, p = 0.004) and discriminated 90-day mortality (ROC AUC 0.72 (95 % confidence interval 0.59, 0.84)). ICU non-survivors had lower mean upslope (141 (75, 193) %/minute versus 185 (143, 217) in survivors, p = 0.016) and AUC StO2 (7.9 (4.3, 12.6) versus 14.5 (11.2, 21.3), p = 0.001). Upslope and AUC StO2 on admission were significant although weak predictors of 90-day mortality (ROC AUC = 0.68 (0.54, 0.82) and 0.70 (0.58, 0.82), respectively). AUC StO2 ≤ 6.65 (1st quartile) on admission was independently associated with higher 90-day mortality (hazard ratio 7.964 (95 % CI 2.211, 28.686)). The lowest upslope in the ICU was independently associated with survival after ICU discharge (odds ratio 0.970 (95 % CI 0.945, 0.996)). CONCLUSIONS: In critically ill patients, NIRS with a VOT enables identification of alterations in tissue oxygen extraction capacity and microvascular reactivity that can predict mortality. TRIAL REGISTRATION: NCT02649088, www.clinicaltrials.gov , date of registration 23rd December 2015, retrospectively registered.


Asunto(s)
Enfermedad Crítica/mortalidad , Microcirculación/fisiología , Microvasos/diagnóstico por imagen , Consumo de Oxígeno/fisiología , Espectroscopía Infrarroja Corta/métodos , Adulto , Anciano , Enfermedad Crítica/terapia , Femenino , Mortalidad Hospitalaria/tendencias , Humanos , Masculino , Microvasos/metabolismo , Persona de Mediana Edad , Estudios Prospectivos
2.
Ann Intensive Care ; 8(1): 64, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29766322

RESUMEN

BACKGROUND: Until now, the prognostic value of microcirculatory alterations in critically ill patients has been mainly evaluated in highly selected subgroups. Aim of this study is to monitor the microcirculation daily in mixed group of Intensive Care Unit (ICU)-patients and to establish the association between (the evolution of) microcirculatory alterations and outcome. METHODS: This is a prospective longitudinal observational single-centre study in adult patients admitted to a 12-bed ICU in an Italian teaching hospital. Sublingual microcirculation was evaluated daily, from admission to discharge/death, using Sidestream Dark Field imaging. Videos were analysed offline to assess flow and density variables. Laboratory and clinical data were recorded simultaneously. A priori, a Microvascular Flow Index (MFI) < 2.6 was defined as abnormal. A binary logistic regression analysis was performed to evaluate the association between microcirculatory variables and outcomes; a Kaplan-Meier survival curve was built. Outcomes were ICU and 90-day mortality. RESULTS: A total of 97 patients were included. An abnormal MFI was present on day 1 in 20.6%, and in 55.7% of cases during ICU admission. Patients with a baseline MFI < 2.6 had higher ICU, in-hospital and 90-day mortality (45 vs. 15.6%, p = 0.012; 55 vs. 28.6%, p = 0.035; 55 vs. 26%, p = 0.017, respectively). An independent association between baseline MFI < 2.6 and outcome was confirmed in a binary logistic analysis (odds ratio 4.594 [1.340-15.754], p = 0.015). A heart rate (HR) ≥ 90 bpm was an adjunctive predictor of mortality. However, a model with stepwise inclusion of mean arterial pressure < 65 mmHg, HR ≥ 90 bpm, lactate > 2 mmol/L and MFI < 2.6 did not detect significant differences in ICU mortality. In case an abnormal MFI was present on day 1, ICU mortality was significantly higher in comparison with patients with an abnormal MFI after day 1 (38 vs. 6%, p = 0.001), indicating a time-dependent significant difference in prognostic value. CONCLUSIONS: In a general ICU population, an abnormal microcirculation at baseline is an independent predictor for mortality. In this setting, additional routine daily microcirculatory monitoring did not reveal extra prognostic information. Further research is needed to integrate microcirculatory monitoring in a set of commonly available hemodynamic variables. Trial registration NCT 02649088, www.clinicaltrials.gov . Date of registration: 23 December 2015, retrospectively registered.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda