Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sci Rep ; 14(1): 8179, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589471

RESUMEN

Breast cancer has been reported to correlate with the infiltration of tumor-associated macrophages (TAMs) or M2-like macrophages in tumor microenvironment (TME) that could promote breast cancer progression. In contrast, M1-like macrophages displayed anti-tumor activity toward cancer. This study was focused on Auricularia polytricha (AP), a cloud ear mushroom, which has been reported for anti-tumor activity and immunomodulation. AP extracts were screened on differentiated THP-1 macrophages (M0). Results demonstrated that water extract (APW) and crude polysaccharides (APW-CP) could upregulate M1-related genes and cytokines production (IL-6, IL-1 ß and TNF-α) significantly. Moreover, APW and APW-CP showed a high expression of CD86 (M1 marker) compared to M0. The NF-κB signaling pathway is crucial for pro-inflammatory gene regulation. The APW and APW-CP treatment showed the induction of the NF-κB pathway in a dose-dependent manner, which related to the ß-glucan content in the extracts. Furthermore, APW-CP polarized macrophages were investigated for anti-tumor activity on human breast cancer cells (MCF-7 and MDA-MB-231). Results showed that APW-CP could inhibit the invasion of breast cancer cells and induce apoptosis. Therefore, M1 macrophages polarized by APW-CP showed anti-tumor activity against the breast cancer cells and ß-glucan may be the potential M1-phenotype inducer.


Asunto(s)
Auricularia , Neoplasias de la Mama , beta-Glucanos , Humanos , Femenino , Neoplasias de la Mama/patología , FN-kappa B/metabolismo , Macrófagos/metabolismo , Polisacáridos/farmacología , Polisacáridos/metabolismo , beta-Glucanos/farmacología , beta-Glucanos/metabolismo , Microambiente Tumoral
2.
Nutrients ; 16(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39203820

RESUMEN

Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.


Asunto(s)
Agaricales , Envejecimiento , Estilo de Vida , Agaricales/química , Humanos , Envejecimiento/efectos de los fármacos , Animales , Antioxidantes/farmacología , Neoplasias/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Alimentos Funcionales
3.
Life Sci ; 345: 122606, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574884

RESUMEN

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales Modificados Genéticamente/metabolismo , Caenorhabditis elegans/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína GAP-43 , Longevidad , Neuroblastoma , Proyección Neuronal , Línea Celular Tumoral
4.
Phytomedicine ; 113: 154728, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898255

RESUMEN

BACKGROUND: Glutamate, an excitatory neurotransmitter, was elevated in the brain of neurodegenerative disease (ND) patients. The excessive glutamate induces Ca2+ influx and reactive oxygen species (ROS) production which exacerbates mitochondrial function, leading to mitophagy aberration, and hyperactivates Cdk5/p35/p25 signaling leading to neurotoxicity in ND. Stigmasterol, a phytosterol, has been reported for its neuroprotective effects; however, the underlying mechanism of stigmasterol on restoring glutamate-induced neurotoxicity is not fully investigated. PURPOSE: We investigated the effect of stigmasterol, a compound isolated from Azadirachta indica (AI) flowers, on ameliorating glutamate-induced neuronal apoptosis in the HT-22 cells. STUDY DESIGN: To further understand the underlying molecular mechanisms of stigmasterol, we investigated the effect of stigmasterol on Cdk5 expression, which was aberrantly expressed in glutamate-treated cells. Cell viability, Western blot analysis, and immunofluorescence are employed. RESULTS: Stigmasterol significantly inhibited glutamate-induced neuronal cell death via attenuating ROS production, recovering mitochondrial membrane depolarization, and ameliorating mitophagy aberration by decreasing mitochondria/lysosome fusion and the ratio of LC3-II/LC3-I. In addition, stigmasterol treatment downregulated glutamate-induced Cdk5, p35, and p25 expression via enhancement of Cdk5 degradation and Akt phosphorylation. Although stigmasterol demonstrated neuroprotective effects on inhibiting glutamate-induced neurotoxicity, the efficiency of stigmasterol is limited due to its poor water solubility. We conjugated stigmasterol to soluble soybean polysaccharides with chitosan nanoparticles to overcome the limitations. We found that the encapsulated stigmasterol increased water solubility and enhanced the protective effect on attenuating the Cdk5/p35/p25 signaling pathway compared with free stigmasterol. CONCLUSION: Our findings illustrate the neuroprotective effect and the improved utility of stigmasterol in inhibiting glutamate-induced neurotoxicity.


Asunto(s)
Azadirachta , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Regulación hacia Abajo , Estigmasterol/farmacología , Estigmasterol/metabolismo , Ácido Glutámico/toxicidad , Ácido Glutámico/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neuronas , Transducción de Señal , Fosforilación , Proteínas tau/metabolismo , Flores/metabolismo , Agua
5.
Sci Rep ; 13(1): 3089, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813838

RESUMEN

Hair loss or alopecia is an unpleasant symptom that exacerbates an individual's self-esteem and requires appropriate treatment. The Wnt/ß-catenin signaling is a central pathway that promotes dermal papilla induction and keratinocyte proliferation during hair follicle renewal. GSK-3ß inactivated by its upstream Akt and ubiquitin-specific protease 47 (USP47) has been shown to inhibit ß-catenin degradation. The cold atmospheric microwave plasma (CAMP) is microwave energy enriched with mixtures of radicals. CAMP has been reported to have antibacterial and antifungal activities with wound healing activity against skin infection; however, the effect of CAMP on hair loss treatment has not been reported. We aimed to investigate the effect of CAMP on promoting hair renewal in vitro and to elucidate the molecular mechanism, targeting ß-catenin signaling and YAP/TAZ, the co-activators in the Hippo pathway, in human dermal papilla cells (hDPCs). We also evaluated plasma effects on the interaction between hDPCs and HaCaT keratinocytes. The hDPCs were treated with plasma-activating media (PAM) or gas-activating media (GAM). The biological outcomes were determined by MTT assay, qRT-PCR, western blot analysis, immunoprecipitation, and immunofluorescence. We found that ß-catenin signaling and YAP/TAZ were significantly increased in PAM-treated hDPCs. PAM treatment also induced ß-catenin translocation and inhibited ß-catenin ubiquitination by activating Akt/GSK-3ß signaling and upregulating USP47 expression. In addition, hDPCs were more aggregated with keratinocytes in PAM-treated cells compared with control. HaCaT cells cultured in a conditioned medium derived from PAM-treated hDPCs exhibited an enhancing effect on activating YAP/TAZ and ß-catenin signaling. These findings suggested that CAMP may be a new therapeutic alternative for alopecic treatment.


Asunto(s)
Folículo Piloso , Microondas , beta Catenina , Humanos , Alopecia/metabolismo , beta Catenina/metabolismo , Proliferación Celular , Células Cultivadas , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/efectos de la radiación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vía de Señalización Wnt
6.
Biomed Pharmacother ; 154: 113596, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36030584

RESUMEN

Neuroinflammation is a brain pathology that involves the expression of high levels of pro-inflammatory mediators, including tumor necrosis factor-alpha (TNF-α). An excessive TNF-α expression could result in neuronal cell death and subsequently lead to neurodegeneration. Auricularia polytricha (AP; an edible mushroom) has been reported as a rich source of ergosterol with several medicinal benefits. The current study reports on the neuroprotective effects of AP extracts and ergosterol against the TNF-α-induced HT-22 hippocampal cell injury. The hexane extract of AP (APH) demonstrated a neuroprotective effect against the TNF-α-induced HT-22 cell toxicity, taking place through the activation of the antioxidant pathway. Ergosterol, a major component of APH, could attenuate the toxicity of TNF-α on HT-22 cells, by increasing the expression of a major antioxidant enzyme (superoxide dismutase-1) and by facilitating the scavenging of reactive oxygen species through antioxidant signaling. Moreover, an antibody array was performed to screen the possible molecular targets of ergosterol in HT-22 cells exposed to TNF-α. Based on the antibody array, the phospho-Akt was activated in the presence of ergosterol, and this finding was also supported by Western blotting analysis. Furthermore, ergosterol inhibited the transcriptional expressions of the glutamate ionotropic receptor N-methyl-D-aspartate (NMDA) type subunit 2B gene (Grin2b) through an early growth response-1 (EGR-1) overexpression in TNF-α-treated HT-22 cells. Our findings suggest that a novel therapeutic effect of AP and ergosterol against neuroinflammation, that it is mediated by an NMDA gene modulation occurring through the overexpression of the EGR-1 transcription factor.


Asunto(s)
Fármacos Neuroprotectores , Antioxidantes/farmacología , Ergosterol/farmacología , Ácido Glutámico , Hipocampo , N-Metilaspartato/farmacología , Fármacos Neuroprotectores/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda