Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Opt Express ; 32(6): 9042-9060, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571147

RESUMEN

Optical characterization and appearance prediction of translucent materials are required in many fields of engineering such as computer graphics, dental restorations or 3D printing technologies. In the case of strongly scattering materials, flux transfer models like the Kubelka-Munk model (2-flux) or the Maheu's 4-flux model have been successfully used to this aim for decades. However, they lead to inaccurate prediction of the color variations of translucent objects of different thicknesses. Indeed, as they rely on the assumption of lambertian fluxes at any depth within the material, they fail to model the internal reflectance at the interfaces, penalizing the accuracy of the optical parameter extraction. The aim of this paper is to investigate the impact of translucency on light angular distribution and corresponding internal reflectances by the mean of the radiative transfer equation, which describes more rigorously the impact of scattering on light propagation. It turns out that the light angular distribution at the bordering interfaces is often far from being lambertian, and that the internal reflectance may vary significantly according to the layer's thickness, refractive index, scattering and absorption coefficients and scattering anisotropy. This work enables to better understand the impact of scattering within a translucent layer and also invites to revisit the well-known Saunderson correction used in 2- or 4-flux models.

2.
Neuroimage ; 278: 120286, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37487945

RESUMEN

Complementary technique to preoperative fMRI and electrical brain stimulation (EBS) for glioma resection could improve dramatically the surgical procedure and patient care. Intraoperative RGB optical imaging is a technique for localizing functional areas of the human cerebral cortex that can be used during neurosurgical procedures. However, it still lacks robustness to be used with neurosurgical microscopes as a clinical standard. In particular, a robust quantification of biomarkers of brain functionality is needed to assist neurosurgeons. We propose a methodology to evaluate and optimize intraoperative identification of brain functional areas by RGB imaging. This consist in a numerical 3D brain model based on Monte Carlo simulations to evaluate intraoperative optical setups for identifying functional brain areas. We also adapted fMRI Statistical Parametric Mapping technique to identify functional brain areas in RGB videos acquired for 12 patients. Simulation and experimental results were consistent and showed that the intraoperative identification of functional brain areas is possible with RGB imaging using deoxygenated hemoglobin contrast. Optical functional identifications were consistent with those provided by EBS and preoperative fMRI. We also demonstrated that a halogen lighting may be particularity adapted for functional optical imaging. We showed that an RGB camera combined with a quantitative modeling of brain hemodynamics biomarkers can evaluate in a robust way the functional areas during neurosurgery and serve as a tool of choice to complement EBS and fMRI.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Glioma/cirugía , Procedimientos Neuroquirúrgicos/métodos
3.
Appl Opt ; 57(22): 6417-6429, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30117872

RESUMEN

We have developed a broadband time-resolved multi-channel near-infrared spectroscopy system that can monitor the physiological responses of the adult human brain. This system is composed of a supercontinuum laser for the source part and of an intensified charge-coupled device camera coupled with an imaging spectrometer for the detection part. It allows the detection of the spectral, from 600 to 900 nm, and spatial dimensions as well as the arrival time of photon information simultaneously. We describe the setup and its characterization in terms of temporal instrument response function, wavelength sensitivity, and stability. The ability of the system to detect the hemodynamic response is then demonstrated. First, an in vivo experiment on an adult volunteer was performed to monitor the response in the arm during a cuff occlusion. Second, the response in the brain during a cognitive task was monitored on a group of five healthy volunteers. Moreover, looking at the response at different time windows, we could monitor the hemodynamic response in depth, enhancing the detection of the cortical activation. Those first results demonstrate the ability of our system to discriminate between the responses of superficial and deep tissues, addressing an important issue in functional near-infrared spectroscopy.


Asunto(s)
Mapeo Encefálico/métodos , Espectroscopía Infrarroja Corta/instrumentación , Adulto , Encéfalo/fisiología , Hemodinámica/fisiología , Hemoglobinas/metabolismo , Humanos , Rayos Láser , Masculino , Espectroscopía Infrarroja Corta/métodos
4.
Opt Express ; 22(17): 20500-14, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25321256

RESUMEN

We present an analytical model of optical fluence for multiple cylindrical inhomogeneities embedded in an otherwise homogeneous turbid medium. The model is based on the diffusion equation and represents the optical fluence distribution inside and outside inhomogeneities as a series of modified Bessel functions. We take into account the interplay between cylindrical inhomogeneities by introducing new boundary conditions on the surface of inhomogeneities. The model is compared with the numerical solution of the diffusion equation with NIRFAST software. The fluences inside the inhomogeneities obtained by the two methods are in close agreement. This permits the use of the model as a forward model for quantitative photoacoustic imaging.

5.
Cancers (Basel) ; 16(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123426

RESUMEN

Diffuse low-grade gliomas are infiltrative tumors whose margins are not distinguishable from the adjacent healthy brain parenchyma. The aim was to precisely examine the results provided by the intraoperative use of macroscopic fluorescence in diffuse low-grade gliomas and to describe the new fluorescence-based techniques capable of guiding the resection of low-grade gliomas. Only about 20% and 50% of low-grade gliomas are macroscopically fluorescent after 5-amino-levulinic acid (5-ALA) or fluorescein sodium intake, respectively. However, 5-ALA is helpful for detecting anaplastic foci, and thus choosing the best biopsy targets in diffuse gliomas. Spectroscopic detection of 5-ALA-induced fluorescence can detect very low and non-macroscopically visible concentrations of protoporphyrin IX, a 5-ALA metabolite, and, consequently, has excellent performances for the detection of low-grade gliomas. Moreover, these tumors have a specific spectroscopic signature with two fluorescence emission peaks, which is useful for distinguishing them not only from healthy brain but also from high-grade gliomas. Confocal laser endomicroscopy can generate intraoperative optic biopsies, but its sensitivity remains limited. In the future, the coupled measurement of autofluorescence and induced fluorescence, and the introduction of fluorescence detection technologies providing a wider field of view could result in the development of operator-friendly tools implementable in the operative routine.

6.
Biomed Opt Express ; 15(1): 387-412, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223192

RESUMEN

Spectral unmixing designates techniques that allow to decompose measured spectra into linear or non-linear combination of spectra of all targets (endmembers). This technique was initially developed for satellite applications, but it is now also widely used in biomedical applications. However, several drawbacks limit the use of these techniques with standard optical devices like RGB cameras. The devices need to be calibrated and a a priori on the observed scene is often necessary. We propose a new method for estimating endmembers and their proportion automatically and without calibration of the acquisition device based on near separable non-negative matrix factorization. This method estimates the endmembers on spectra of absorbance changes presenting periodic events. This is very common in in vivo biomedical and medical optical imaging where hemodynamics dominate the absorbance fluctuations. We applied the method for identifying functional brain areas during neurosurgery using four different RGB cameras (an industrial camera, a smartphone and two surgical microscopes). Results obtained with the auto-calibration method were consistent with the intraoperative gold standards. Endmembers estimated with the auto-calibration method were similar to the calibrated endmembers used in the modified Beer-Lambert law. The similarity was particularly strong when both cardiac and respiratory periodic events were considered. This work can allow a widespread use of spectral imaging in the industrial or medical field.

7.
J Biomed Opt ; 29(9): 093509, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39318967

RESUMEN

Significance: Diffuse optical modalities such as broadband near-infrared spectroscopy (bNIRS) and hyperspectral imaging (HSI) represent a promising alternative for low-cost, non-invasive, and fast monitoring of living tissue. Particularly, the possibility of extracting the molecular composition of the tissue from the optical spectra deems the spectroscopy techniques as a unique diagnostic tool. Aim: No established method exists to streamline the inference of the biochemical composition from the optical spectrum for real-time applications such as surgical monitoring. We analyze a machine learning technique for inference of changes in the molecular composition of brain tissue. Approach: We propose modifications to the existing learnable methodology based on the Beer-Lambert law. We evaluate the method's applicability to linear and nonlinear formulations of this physical law. The approach is tested on data obtained from the bNIRS- and HSI-based monitoring of brain tissue. Results: The results demonstrate that the proposed method enables real-time molecular composition inference while maintaining the accuracy of traditional methods. Preliminary findings show that Beer-Lambert law-based spectral unmixing allows contrasting brain anatomy semantics such as the vessel tree and tumor area. Conclusion: We present a data-driven technique for inferring molecular composition change from diffuse spectroscopy of brain tissue, potentially enabling intra-operative monitoring.


Asunto(s)
Encéfalo , Aprendizaje Automático , Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/métodos , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Imágenes Hiperespectrales/métodos , Química Encefálica , Algoritmos
8.
J Biomed Opt ; 29(9): 093508, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39258259

RESUMEN

Significance: Histopathological examination of surgical biopsies, such as in glioma and glioblastoma resection, is hindered in current clinical practice by the long time required for the laboratory analysis and pathological screening, typically taking several days or even weeks to be completed. Aim: We propose here a transportable, high-density, spectral scanning-based hyperspectral imaging (HSI) setup, named HyperProbe1, that can provide in situ, fast biochemical analysis, and mapping of fresh surgical tissue samples, right after excision, and without the need for fixing, staining nor compromising the integrity of the tissue properties. Approach: HyperProbe1 is based on spectral scanning via supercontinuum laser illumination filtered with acousto-optic tunable filters. Such methodology allows the user to select any number and type of wavelength bands in the visible and near-infrared range between 510 and 900 nm (up to a maximum of 79) and to reconstruct 3D hypercubes composed of high-resolution (4 to 5 µ m ), widefield images ( 0.9 × 0.9 mm 2 ) of the surgical samples, where each pixel is associated with a complete spectrum. Results: The HyperProbe1 setup is here presented and characterized. The system is applied to 11 fresh surgical biopsies of glioma from routine patients, including different grades of tumor classification. Quantitative analysis of the composition of the tissue is performed via fast spectral unmixing to reconstruct the mapping of major biomarkers, such as oxy-( HbO 2 ) and deoxyhemoglobin (HHb), as well as cytochrome-c-oxidase (CCO). We also provided a preliminary attempt to infer tumor classification based on differences in composition in the samples, suggesting the possibility of using lipid content and differential CCO concentrations to distinguish between lower and higher-grade gliomas. Conclusions: A proof of concept of the performances of HyperProbe1 for quantitative, biochemical mapping of surgical biopsies is demonstrated, paving the way for improving current post-surgical, histopathological practice via non-destructive, in situ streamlined screening of fresh tissue samples in a matter of minutes after excision.


Asunto(s)
Neoplasias Encefálicas , Imágenes Hiperespectrales , Humanos , Imágenes Hiperespectrales/métodos , Biopsia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/patología , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología
9.
Nanoscale ; 16(6): 2931-2944, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38230699

RESUMEN

X-Ray imaging techniques are among the most widely used modalities in medical imaging and their constant evolution has led to the emergence of new technologies. The new generation of computed tomography (CT) systems - spectral photonic counting CT (SPCCT) and X-ray luminescence optical imaging - are examples of such powerful techniques. With these new technologies the rising demand for new contrast agents has led to extensive research in the field of nanoparticles and the possibility to merge the modalities appears to be highly attractive. In this work, we propose the design of lanthanide-based nanocrystals as a multimodal contrast agent with the two aforementioned technologies, allowing SPCCT and optical imaging at the same time. We present a systematic study on the effect of the Tb3+ doping level and surface modification on the generation of contrast with SPCCT and the luminescence properties of GdF3:Tb3+ nanocrystals (NCs), comparing different surface grafting with organic ligands and coatings with silica to make these NCs bio-compatible. A comparison of the luminescence properties of these NCs with UV revealed that the best results were obtained for the Gd0.9Tb0.1F3 composition. This property was confirmed under X-ray excitation in microCT and with SPCCT. Moreover, we could demonstrate that the intensity of the luminescence and the excited state lifetime are strongly affected by the surface modification. Furthermore, whatever the chemical nature of the ligand, the contrast with SPCCT did not change. Finally, the successful proof of concept of multimodal imaging was performed in vivo with nude mice in the SPCCT taking advantage of the so-called color K-edge imaging method.


Asunto(s)
Medios de Contraste , Tomografía Computarizada por Rayos X , Ratones , Animales , Tomografía Computarizada por Rayos X/métodos , Rayos X , Luminiscencia , Ratones Desnudos , Fantasmas de Imagen
10.
Sci Rep ; 13(1): 16650, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789008

RESUMEN

Histological analysis is the gold standard method for cancer diagnosis. However, it is prone to subjectivity and sampling bias. In response to these limitations, we introduce a quantitative bimodal approach that aims to provide non-invasive guidance towards suspicious regions. Light backscattering spectroscopy and quantitative ultrasound techniques were combined to characterize two different bone tumor types from animal models: chondrosarcomas and osteosarcomas. Two different cell lines were used to induce osteosarcoma growth. Histological analyses were conducted to serve as references. Three ultrasound parameters and intensities of the light reflectance profiles showed significant differences between chondrosarcomas and osteosarcomas at the 5% level. Likewise, variations in the same biomarkers were reported for the two types of osteosarcoma, despite their similar morphology observed in the histological examinations. These observations show the sensitivity of our techniques in probing fine tissue properties. Secondly, the ultrasound spectral-based technique identified the mean size of chondrosarcoma cells and nuclei with relative errors of about 22% and 9% respectively. The optical equivalent technique correctly extracted scatterer size distributions that encompass nuclei and cells for chondrosarcomas and osteosarcomas ([Formula: see text] and [Formula: see text] respectively). The optical scattering contributions of nuclei were estimated at 52% for the chondrosarcomas and 69% for the osteosarcomas, probably indicating the abundant and the absent extracellular matrix respectively. Thus, the ultrasound and the optical methods brought complementary parameters. They successfully estimated morphological parameters at the cellular and the nuclear scales, making our bimodal technique promising for tumor characterization.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Osteosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Animales , Neoplasias Óseas/metabolismo , Osteosarcoma/patología , Condrosarcoma/diagnóstico por imagen , Condrosarcoma/metabolismo , Análisis Espectral
11.
Diagnostics (Basel) ; 11(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34829414

RESUMEN

RGB optical imaging is a marker-free, contactless, and non-invasive technique that is able to monitor hemodynamic brain response following neuronal activation using task-based and resting-state procedures. Magnetic resonance imaging (fMRI) and functional near infra-red spectroscopy (fNIRS) resting-state procedures cannot be used intraoperatively but RGB imaging provides an ideal solution to identify resting-state networks during a neurosurgical operation. We applied resting-state methodologies to intraoperative RGB imaging and evaluated their ability to identify resting-state networks. We adapted two resting-state methodologies from fMRI for the identification of resting-state networks using intraoperative RGB imaging. Measurements were performed in 3 patients who underwent resection of lesions adjacent to motor sites. The resting-state networks were compared to the identifications provided by RGB task-based imaging and electrical brain stimulation. Intraoperative RGB resting-state networks corresponded to RGB task-based imaging (DICE:0.55±0.29). Resting state procedures showed a strong correspondence between them (DICE:0.66±0.11) and with electrical brain stimulation. RGB imaging is a relevant technique for intraoperative resting-state networks identification. Intraoperative resting-state imaging has several advantages compared to functional task-based analyses: data acquisition is shorter, less complex, and less demanding for the patients, especially for those unable to perform the tasks.

12.
Sci Rep ; 10(1): 1462, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996727

RESUMEN

Gliomas are infiltrative brain tumors with a margin difficult to identify. 5-ALA induced PpIX fluorescence measurements are a clinical standard, but expert-based classification models still lack sensitivity and specificity. Here a fully automatic clustering method is proposed to discriminate glioma margin. This is obtained from spectroscopic fluorescent measurements acquired with a recently introduced intraoperative set up. We describe a data-driven selection of best spectral features and show how this improves results of margin prediction from healthy tissue by comparison with the standard biomarker-based prediction. This pilot study based on 10 patients and 50 samples shows promising results with a best performance of 77% of accuracy in healthy tissue prediction from margin tissue.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Aprendizaje Automático , Ácido Aminolevulínico/metabolismo , Biomarcadores de Tumor , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Análisis por Conglomerados , Simulación por Computador , Glioma/patología , Humanos , Márgenes de Escisión , Proyectos Piloto , Valor Predictivo de las Pruebas , Pronóstico , Protoporfirinas/química , Espectrometría de Fluorescencia
13.
Med Image Anal ; 53: 1-10, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30640039

RESUMEN

In this paper, we present a motion compensation algorithm dedicated to video processing during neurosurgery. After craniotomy, the brain surface undergoes a repetitive motion due to the cardiac pulsation. This motion as well as potential video camera motion prevent accurate video analysis. We propose a dedicated motion model where the brain deformation is described using a linear basis learned from a few initial frames of the video. As opposed to other works using linear basis for the flow, the camera motion is explicitly accounted in the transformation model. Despite the nonlinear nature of our model, all the motion parameters are robustly estimated all at once, using only one singular value decomposition (SVD), making our procedure computationally efficient. A Lagrangian specification of the flow field ensures the stability of the method. Experiments on in vivo data are presented to evaluate the capacity of the method to cope with occlusion or camera motion. The method we propose satisfies the intraoperative constraints: it is robust to surgical tools occlusions, it works in real time, and it is able to handle large camera viewpoint changes.


Asunto(s)
Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Procesamiento de Imagen Asistido por Computador/métodos , Procedimientos Neuroquirúrgicos , Grabación en Video , Humanos , Movimiento (Física)
15.
Neurophotonics ; 6(4): 045015, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31890745

RESUMEN

Intraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. However, it still lacks robustness to be used as a clinical standard. In particular, new biomarkers of brain functionality with improved sensitivity and specificity are needed. We present a method for the computation of hemodynamics-based functional brain maps using an RGB camera and a white light source. We measure the quantitative oxy and deoxyhemoglobin concentration changes in the human brain cortex with the modified Beer-Lambert law and Monte Carlo simulations. A functional model has been implemented to evaluate the functional brain areas following neuronal activation by physiological stimuli. The results show a good correlation between the computed quantitative functional maps and the brain areas localized by electrical brain stimulation (EBS). We demonstrate that an RGB camera combined with a quantitative modeling of brain hemodynamics biomarkers can evaluate in a robust way the functional areas during neurosurgery and serve as a tool of choice to complement EBS.

16.
J Biomed Opt ; 23(9): 1-7, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30251489

RESUMEN

5-ALA-induced protoporphyrin IX (PpIX) has shown its relevance in medical assisting techniques, notably in the detection of glioma (brain tumors). Validation of instruments on phantoms is mandatory and a standardization procedure has recently been proposed. This procedure yields phantoms recipes to realize a linear relationship between PpIX concentration and fluorescence emission intensity. The present study puts forward phantoms where this linear relationship cannot be used. We propose a model that considers two states of PpIX, corresponding to two different aggregates of PpIX, with fluorescence spectra peaking at 634 and 620 nm, respectively. We characterize the influence of these two states on PpIX fluorescence emission spectra in phantoms with steady concentration of PpIX and various microenvironment parameters (surfactant, Intralipid or bovine blood concentration, and pH). We show that, with fixed PpIX concentration, a modification of the microenvironment induces a variation of the emitted spectrum, notably a shift in its central wavelength. We show that this modification reveals a variation of proportions of the two states. This establishes phantom microenvironment regimes where the usual single state model is biased while a linear combination of the two spectra enables accurate recovering of any measured spectra.


Asunto(s)
Fantasmas de Imagen , Protoporfirinas/química , Espectrometría de Fluorescencia , Ácido Aminolevulínico/química , Calibración , Dinámicas no Lineales , Espectrometría de Fluorescencia/instrumentación , Espectrometría de Fluorescencia/métodos , Espectrometría de Fluorescencia/normas
18.
Opt Express ; 14(25): 12271-87, 2006 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19529655

RESUMEN

Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

19.
Biomed Opt Express ; 6(7): 2424-34, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26203371

RESUMEN

This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results.

20.
Biomed Opt Express ; 4(4): 548-58, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23577290

RESUMEN

5-ALA-induced protoporphyrin IX (PpIX) fluorescence enables to guiding in intra-operative surgical glioma resection. However at present, it has yet to be shown that this method is able to identify infiltrative component of glioma. In extracted tumor tissues we measured a two-peaked emission in low grade gliomas and in the infiltrative component of glioblastomas due to multiple photochemical states of PpIX. The second emission peak appearing at 620 nm (shifted by 14 nm from the main peak at 634 nm) limits the sensibility of current methods to measured PpIX concentration. We propose new measured parameters, by taking into consideration the two-peaked emission, to overcome these limitations in sensitivity. These parameters clearly distinguish the solid component of glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda