Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Bioconjug Chem ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958375

RESUMEN

Conventional serum markers often fail to accurately detect cholestasis accompanying many liver diseases. Although elevation in serum bile acid (BA) levels sensitively reflects impaired hepatobiliary function, other factors altering BA pool size and enterohepatic circulation can affect these levels. To develop fluorescent probes for extracorporeal noninvasive hepatobiliary function assessment by real-time monitoring methods, 1,3-dipolar cycloaddition reactions were used to conjugate near-infrared (NIR) fluorochromes with azide-functionalized BA derivatives (BAD). The resulting compounds (NIRBADs) were chromatographically (FC and PTLC) purified (>95%) and characterized by fluorimetry, 1H NMR, and HRMS using ESI ionization coupled to quadrupole TOF mass analysis. Transport studies using CHO cells stably expressing the BA carrier NTCP were performed by flow cytometry. Extracorporeal fluorescence was detected in anesthetized rats by high-resolution imaging analysis. Three NIRBADs were synthesized by conjugating alkynocyanine 718 with cholic acid (CA) at the COOH group via an ester (NIRBAD-1) or amide (NIRBAD-3) spacer, or at the 3α-position by a triazole link (NIRBAD-2). NIRBADs were efficiently taken up by cells expressing NTCP, which was inhibited by taurocholic acid (TCA). Following i.v. administration of NIRBAD-3 to rats, liver uptake and consequent release of NIR fluorescence could be extracorporeally monitored. This transient organ-specific handling contrasted with the absence of release to the intestine of alkynocyanine 718 and the lack of hepatotropism observed with other probes, such as indocyanine green. NIRBAD-3 administration did not alter serum biomarkers of hepatic and renal toxicity. NIRBADs can serve as probes to evaluate hepatobiliary function by noninvasive extracorporeal methods.

2.
Hepatology ; 76(5): 1259-1274, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35395098

RESUMEN

BACKGROUND AND AIMS: A variant (p.Arg225Trp) of peroxisomal acyl-CoA oxidase 2 (ACOX2), involved in bile acid (BA) side-chain shortening, has been associated with unexplained persistent hypertransaminasemia and accumulation of C27-BAs, mainly 3α,7α,12α-trihydroxy-5ß-cholestanoic acid (THCA). We aimed to investigate the prevalence of ACOX2 deficiency-associated hypertransaminasemia (ADAH), its response to ursodeoxycholic acid (UDCA), elucidate its pathophysiological mechanism and identify other inborn errors that could cause this alteration. METHODS AND RESULTS: Among 33 patients with unexplained hypertransaminasemia from 11 hospitals and 13 of their relatives, seven individuals with abnormally high C27-BA levels (>50% of total BAs) were identified by high-performance liquid chromatography-mass spectrometry. The p.Arg225Trp variant was found in homozygosity (exon amplification/sequencing) in two patients and three family members. Two additional nonrelated patients were heterozygous carriers of different alleles: c.673C>T (p.Arg225Trp) and c.456_459del (p.Thr154fs). In patients with ADAH, impaired liver expression of ACOX2, but not ACOX3, was found (immunohistochemistry). Treatment with UDCA normalized aminotransferase levels. Incubation of HuH-7 hepatoma cells with THCA, which was efficiently taken up, but not through BA transporters, increased reactive oxygen species production (flow cytometry), endoplasmic reticulum stress biomarkers (GRP78, CHOP, and XBP1-S/XBP1-U ratio), and BAXα expression (reverse transcription followed by quantitative polymerase chain reaction and immunoblot), whereas cell viability was decreased (tetrazolium salt-based cell viability test). THCA-induced cell toxicity was higher than that of major C24-BAs and was not prevented by UDCA. Fourteen predicted ACOX2 variants were generated (site-directed mutagenesis) and expressed in HuH-7 cells. Functional tests to determine their ability to metabolize THCA identified six with the potential to cause ADAH. CONCLUSIONS: Dysfunctional ACOX2 has been found in several patients with unexplained hypertransaminasemia. This condition can be accurately identified by a noninvasive diagnostic strategy based on plasma BA profiling and ACOX2 sequencing. Moreover, UDCA treatment can efficiently attenuate liver damage in these patients.


Asunto(s)
Ácidos y Sales Biliares , Ácido Ursodesoxicólico , Humanos , Ácido Ursodesoxicólico/farmacología , Ácido Ursodesoxicólico/uso terapéutico , Acil-CoA Oxidasa/genética , Especies Reactivas de Oxígeno , Transaminasas , Sales de Tetrazolio , Oxidorreductasas
3.
Proc Natl Acad Sci U S A ; 117(28): 16492-16499, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601222

RESUMEN

Metabolic stress causes activation of the cJun NH2-terminal kinase (JNK) signal transduction pathway. It is established that one consequence of JNK activation is the development of insulin resistance and hepatic steatosis through inhibition of the transcription factor PPARα. Indeed, JNK1/2 deficiency in hepatocytes protects against the development of steatosis, suggesting that JNK inhibition represents a possible treatment for this disease. However, the long-term consequences of JNK inhibition have not been evaluated. Here we demonstrate that hepatic JNK controls bile acid production. We found that hepatic JNK deficiency alters cholesterol metabolism and bile acid synthesis, conjugation, and transport, resulting in cholestasis, increased cholangiocyte proliferation, and intrahepatic cholangiocarcinoma. Gene ablation studies confirmed that PPARα mediated these effects of JNK in hepatocytes. This analysis highlights potential consequences of long-term use of JNK inhibitors for the treatment of metabolic syndrome.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colangiocarcinoma/enzimología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/fisiopatología , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/genética , PPAR alfa/genética , PPAR alfa/metabolismo
4.
J Hepatol ; 77(4): 991-1004, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750136

RESUMEN

BACKGROUND & AIMS: Inflammation, particularly that mediated by bacterial components translocating from the gut to the liver and binding to toll-like receptors (TLRs), is central to cholestatic liver injury. The triggering receptor expressed on myeloid cells-2 (TREM-2) inhibits TLR-mediated signaling and exerts a protective role in hepatocellular injury and carcinogenesis. This study aims to evaluate the role of TREM-2 in cholestasis. METHODS: TREM-2 expression was analyzed in the livers of patients with primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC), and in mouse models of cholestasis. Wild-type (WT) and Trem-2 deficient (Trem-2-/-) mice were subjected to experimental cholestasis and gut sterilization. Primary cultured Kupffer cells were incubated with lipopolysaccharide and/or ursodeoxycholic acid (UDCA) and inflammatory responses were analyzed. RESULTS: TREM-2 expression was upregulated in the livers of patients with PBC or PSC, and in murine models of cholestasis. Compared to WT, the response to bile duct ligation (BDL)-induced obstructive cholestasis or alpha-naphtylisothiocyanate (ANIT)-induced cholestasis was exacerbated in Trem-2-/- mice. This was characterized by enhanced necroptotic cell death, inflammatory responses and biliary expansion. Antibiotic treatment partially abrogated the effects observed in Trem-2-/- mice after BDL. Experimental overexpression of TREM-2 in the liver of WT mice downregulated ANIT-induced IL-33 expression and neutrophil recruitment. UDCA regulated Trem-1 and Trem-2 expression in primary cultured mouse Kupffer cells and dampened inflammatory gene transcription via a TREM-2-dependent mechanism. CONCLUSIONS: TREM-2 acts as a negative regulator of inflammation during cholestasis, representing a novel potential therapeutic target. LAY SUMMARY: Cholestasis (the reduction or cessation of bile flow) causes liver injury. This injury is exacerbated when gut-derived bacterial components interact with receptors (specifically Toll-like receptors or TLRs) on liver-resident immune cells, promoting inflammation. Herein, we show that the anti-inflammatory receptor TREM-2 dampens TLR-mediated signaling and hence protects against cholestasis-induced liver injury. Thus, TREM-2 could be a potential therapeutic target in cholestasis.


Asunto(s)
Colestasis , Glicoproteínas de Membrana , Receptores Inmunológicos , Ácido Ursodesoxicólico , Animales , Antibacterianos , Antiinflamatorios , Colestasis/complicaciones , Inflamación , Interleucina-33 , Lipopolisacáridos , Hígado , Glicoproteínas de Membrana/genética , Ratones , Receptores Inmunológicos/genética , Receptor Activador Expresado en Células Mieloides 1 , Ácido Ursodesoxicólico/farmacología
5.
J Hepatol ; 74(6): 1429-1441, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33515644

RESUMEN

BACKGROUND & AIMS: Besides their physiological role in bile formation and fat digestion, bile acids (BAs) synthesised from cholesterol in hepatocytes act as signalling molecules that modulate hepatocellular carcinoma (HCC). Trafficking of cholesterol to mitochondria through steroidogenic acute regulatory protein 1 (STARD1) is the rate-limiting step in the alternative pathway of BA generation, the physiological relevance of which is not well understood. Moreover, the specific contribution of the STARD1-dependent BA synthesis pathway to HCC has not been previously explored. METHODS: STARD1 expression was analyzed in a cohort of human non-alcoholic steatohepatitis (NASH)-derived HCC specimens. Experimental NASH-driven HCC models included MUP-uPA mice fed a high-fat high-cholesterol (HFHC) diet and diethylnitrosamine (DEN) treatment in wild-type (WT) mice fed a HFHC diet. Molecular species of BAs and oxysterols were analyzed by mass spectrometry. Effects of NASH-derived BA profiles were investigated in tumour-initiated stem-like cells (TICs) and primary mouse hepatocytes (PMHs). RESULTS: Patients with NASH-associated HCC exhibited increased hepatic expression of STARD1 and an enhanced BA pool. Using NASH-driven HCC models, STARD1 overexpression in WT mice increased liver tumour multiplicity, whereas hepatocyte-specific STARD1 deletion (Stard1ΔHep) in WT or MUP-uPA mice reduced tumour burden. These findings mirrored the levels of unconjugated primary BAs, ß-muricholic acid and cholic acid, and their tauroconjugates in STARD1-overexpressing and Stard1ΔHep mice. Incubation of TICs or PMHs with a mix of BAs mimicking this profile stimulated expression of genes involved in pluripotency, stemness and inflammation. CONCLUSIONS: The study reveals a previously unrecognised role of STARD1 in HCC pathogenesis, wherein it promotes the synthesis of primary BAs through the mitochondrial pathway, the products of which act in TICs to stimulate self-renewal, stemness and inflammation. LAY SUMMARY: Effective therapy for hepatocellular carcinoma (HCC) is limited because of our incomplete understanding of its pathogenesis. The contribution of the alternative pathway of bile acid (BA) synthesis to HCC development is unknown. We uncover a key role for steroidogenic acute regulatory protein 1 (STARD1) in non-alcoholic steatohepatitis-driven HCC, wherein it stimulates the generation of BAs in the mitochondrial acidic pathway, the products of which stimulate hepatocyte pluripotency and self-renewal, as well as inflammation.


Asunto(s)
Ácidos y Sales Biliares/biosíntesis , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/metabolismo , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal/genética , Adulto , Anciano , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Células Cultivadas , Estudios de Cohortes , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Hepatocitos/metabolismo , Humanos , Hígado/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Fosfoproteínas/genética , Adulto Joven
6.
Hepatology ; 70(4): 1246-1261, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30972782

RESUMEN

Although the multi-tyrosine kinase inhibitor sorafenib is useful in the treatment of several cancers, cholangiocarcinoma (CCA) is refractory to this drug. Among other mechanisms of chemoresistance, impaired uptake through human organic cation transporter type 1 (hOCT1) (gene SLC22A1) has been suggested. Here we have investigated the events accounting for this phenotypic characteristic and have evaluated the interest of selective gene therapy strategies to overcome this limitation. Gene expression and DNA methylation of SLC22A1 were analyzed using intrahepatic (iCCA) and extrahepatic (eCCA) biopsies (Copenhagen and Salamanca cohorts; n = 132) and The Cancer Genome Atlas (TCGA)-CHOL (n = 36). Decreased hOCT1 mRNA correlated with hypermethylation status of the SLC22A1 promoter. Treatment of CCA cells with decitabine (demethylating agent) or butyrate (histone deacetylase inhibitor) restored hOCT1 expression and increased sorafenib uptake. MicroRNAs able to induce hOCT1 mRNA decay were analyzed in paired samples of TCGA-CHOL (n = 9) and Copenhagen (n = 57) cohorts. Consistent up-regulation in tumor tissue was found for miR-141 and miR-330. High proportion of aberrant hOCT1 mRNA splicing in CCA was also seen. Lentiviral-mediated transduction of eCCA (EGI-1 and TFK-1) and iCCA (HuCCT1) cells with hOCT1 enhanced sorafenib uptake and cytotoxic effects. In chemically induced CCA in rats, reduced rOct1 expression was accompanied by impaired sorafenib uptake. In xenograft models of eCCA cells implanted in mouse liver, poor response to sorafenib was observed. However, tumor growth was markedly reduced by cotreatment with sorafenib and adenoviral vectors encoding hOCT1 under the control of the BIRC5 promoter, a gene highly up-regulated in CCA. Conclusion: The reason for impaired hOCT1-mediated sorafenib uptake by CCA is multifactorial. Gene therapy capable of selectively inducing hOCT1 in tumor cells can be considered a potentially useful chemosensitization strategy to improve the response of CCA to sorafenib.


Asunto(s)
Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Regulación hacia Abajo/genética , Factor 1 de Transcripción de Unión a Octámeros/genética , Inhibidores de Proteínas Quinasas/farmacología , Sorafenib/farmacología , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral/efectos de los fármacos , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Metilación de ADN/genética , Modelos Animales de Enfermedad , Resistencia a Medicamentos/genética , Terapia Genética/métodos , Humanos , Immunoblotting , Masculino , ARN Mensajero/genética , Distribución Aleatoria , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estadísticas no Paramétricas
7.
Hepatology ; 69(4): 1632-1647, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30411380

RESUMEN

Intrahepatic accumulation of bile acids (BAs) causes hepatocellular injury. Upon liver damage, a potent protective response is mounted to restore the organ's function. Epidermal growth factor receptor (EGFR) signaling is essential for regeneration after most types of liver damage, including cholestatic injury. However, EGFR can be activated by a family of growth factors induced during liver injury and regeneration. We evaluated the role of the EGFR ligand, amphiregulin (AREG), during cholestatic liver injury and regulation of AREG expression by BAs. First, we demonstrated increased AREG levels in livers from patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In two murine models of cholestatic liver injury, bile duct ligation (BDL) and alpha-naphthyl-isothiocyanate (ANIT) gavage, hepatic AREG expression was markedly up-regulated. Importantly, Areg-/- mice showed aggravated liver injury after BDL and ANIT administration compared to Areg+/+ mice. Recombinant AREG protected from ANIT and BDL-induced liver injury and reduced BA-triggered apoptosis in liver cells. Oral BA administration induced ileal and hepatic Areg expression, and, interestingly, cholestyramine feeding reduced postprandial Areg up-regulation in both tissues. Most interestingly, Areg-/- mice displayed high hepatic cholesterol 7 α-hydroxylase (CYP7A1) expression, reduced serum cholesterol, and high BA levels. Postprandial repression of Cyp7a1 was impaired in Areg-/- mice, and recombinant AREG down-regulated Cyp7a1 mRNA in hepatocytes. On the other hand, BAs promoted AREG gene expression and protein shedding in hepatocytes. This effect was mediated through the farnesoid X receptor (FXR), as demonstrated in Fxr-/- mice, and involved EGFR transactivation. Finally, we show that hepatic EGFR expression is indirectly induced by BA-FXR through activation of suppressor of cytokine signaling-3 (SOC3). Conclusion: AREG-EGFR signaling protects from cholestatic injury and participates in the physiological regulation of BA synthesis.


Asunto(s)
Anfirregulina/metabolismo , Ácidos y Sales Biliares/biosíntesis , Colestasis Intrahepática/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Animales , Receptores ErbB/metabolismo , Humanos , Ratones Endogámicos C57BL
8.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326111

RESUMEN

The liver plays a pivotal role in drug handling due to its contribution to the processes of detoxification (phases 0 to 3). In addition, the liver is also an essential organ for the mechanism of action of many families of drugs, such as cholesterol-lowering, antidiabetic, antiviral, anticoagulant, and anticancer agents. Accordingly, the presence of genetic variants affecting a high number of genes expressed in hepatocytes has a critical clinical impact. The present review is not an exhaustive list but a general overview of the most relevant variants of genes involved in detoxification phases. The available information highlights the importance of defining the genomic profile responsible for the hepatic handling of drugs in many ways, such as (i) impaired uptake, (ii) enhanced export, (iii) altered metabolism due to decreased activation of prodrugs or enhanced inactivation of active compounds, and (iv) altered molecular targets located in the liver due to genetic changes or activation/downregulation of alternative/compensatory pathways. In conclusion, the advance in this field of modern pharmacology, which allows one to predict the outcome of the treatments and to develop more effective and selective agents able to overcome the lack of effect associated with the existence of some genetic variants, is required to step forward toward a more personalized medicine.


Asunto(s)
Variación Genética , Inactivación Metabólica/genética , Hígado/metabolismo , Variantes Farmacogenómicas , Alelos , Animales , Humanos , Fase I de la Desintoxicación Metabólica/genética , Fase II de la Desintoxicación Metabólica/genética , Mutación , Transportadores de Anión Orgánico Sodio-Independiente/química , Transportadores de Anión Orgánico Sodio-Independiente/genética , Oxidación-Reducción , Polimorfismo de Nucleótido Simple
9.
Arch Toxicol ; 93(3): 623-634, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30659321

RESUMEN

Several ATP-binding cassette (ABC) proteins reduce intracellular concentrations of antitumor drugs and hence weaken the response of cancer cells to chemotherapy. Accordingly, the inhibition of these export pumps constitutes a promising strategy to chemosensitize highly chemoresistant tumors, such as hepatocellular carcinoma (HCC). Here, we have investigated the ability of ß-caryophyllene oxide (CRYO), a naturally occurring sesquiterpene component of many essential oils, to inhibit, at non-toxic doses, ABC pumps and improve the response of HCC cells to sorafenib. First, we have obtained a clonal subline (Alexander/R) derived from human hepatoma cells with enhanced multidrug resistance (MDR) associated to up-regulation (mRNA and protein) of MRP1 and MRP2. Analysis of fluorescent substrates export (flow cytometry) revealed that CRYO did not affect the efflux of fluorescein (MRP3, MRP4 and MRP5) but inhibited that of rhodamine 123 (MDR1) and calcein (MRP1 and MRP2). This ability was higher for CRYO than for other sesquiterpenes assayed. CRYO also inhibited sorafenib efflux, increased its intracellular accumulation (HPLC-MS/MS) and enhanced its cytotoxic response (MTT). For comparison, the effect of known ABC pumps inhibitors was also determined. They induced strong (diclofenac on MRPs), modest (verapamil on MDR1) or null (fumitremorgin C on BCRP) effect on sorafenib efflux and cytotoxicity. In the mouse xenograft model, the response to sorafenib treatment of subcutaneous tumors generated by mouse hepatoma Hepa 1-6/R cells, with marked MDR phenotype, was significantly enhanced by CRYO co-administration. In conclusion, at non-toxic dose, CRYO is able to chemosensitizating liver cancer cells to sorafenib by favoring its intracellular accumulation.


Asunto(s)
Antineoplásicos/toxicidad , Resistencia a Antineoplásicos/efectos de los fármacos , Sesquiterpenos Policíclicos/metabolismo , Sorafenib/toxicidad , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Carcinoma Hepatocelular , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Humanos , Neoplasias Hepáticas , Ratones , Proteínas de Neoplasias
10.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2927-2937, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29883717

RESUMEN

At high doses, glucocorticoids (GC) have been associated with enhanced serum bile acids and liver injury. We have evaluated the effect of GC, in the absence of hepatotoxicity, on FXR/FGF91(Fgf15)/FGF21-mediated ileum-liver crosstalk. Rats and mice (wild type and Fxr-/-, Fgf15-/- and int-Gr-/- strains; the latter with GC receptor (Gr) knockout selective for intestinal epithelial cells), were treated (i.p.) with dexamethasone, prednisolone or budesonide. In both species, high doses of GC caused hepatotoxicity. At a non-hepatotoxic dose, GC induced ileal Fgf15 down-regulation and liver Fgf21 up-regulation, without affecting Fxr expression. Fgf21 mRNA levels correlated with those of several genes involved in glucose and bile acid metabolism. Surprisingly, liver Cyp7a1 was not up-regulated. The expression of factors involved in transcriptional modulation by Fxr and Gr (p300, Drip205, CBP and Smrt) was not affected. Pxr target genes Cyp3a11 and Mrp2 were not up-regulated in liver or intestine. In contrast, the expression of some Pparα target genes in liver (Fgf21, Cyp4a14 and Vanin-1) and intestine (Vanin-1 and Cyp3a11) was altered. In mice with experimental colitis, liver Fgf21 was up-regulated (4.4-fold). HepG2 cells transfection with FGF21 inhibited CYP7A1 promoter (prCYP7A1-Luc2). This was mimicked by pure human FGF21 protein or culture in medium previously conditioned by cells over-expressing FGF21. This response was not abolished by deletion of a putative response element for phosphorylated FGF21 effectors present in prCYP7A1. In conclusion, GC interfere with FXR/FGF19-mediated intestinal control of CYP7A1 expression by the liver and stimulate hepatic secretion of FGF21, which inhibits CYP7A1 promoter through an autocrine mechanism.


Asunto(s)
Comunicación Autocrina/efectos de los fármacos , Glucocorticoides/farmacología , Íleon/metabolismo , Hígado/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Ácidos y Sales Biliares/biosíntesis , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Colitis/inducido químicamente , Colitis/patología , Modelos Animales de Enfermedad , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Células Hep G2 , Humanos , Íleon/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Regulación hacia Arriba
11.
Arch Toxicol ; 92(6): 2109-2118, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29594326

RESUMEN

The nucleoside reverse transcriptase inhibitor zidovudine (AZT), used in HIV infection treatment, induces mitochondrial DNA (mtDNA) depletion. A cause-effect relationship between mtDNA status alterations and autophagy has been reported. Both events are common in several liver diseases, including hepatocellular carcinoma. Here, we have studied autophagy activation in rat liver with mtDNA depletion induced by AZT administration in drinking water for 35 days. AZT at a concentration of 1 mg/ml, but not 0.5 mg/ml in the drinking water, decreased mtDNA levels in rat liver and extrahepatic tissues. In liver, mtDNA-encoded cytochrome c oxidase 1 protein levels were decreased. Although serum biomarkers of liver and kidney toxicity remained unaltered, ß-hydroxybutyrate levels were increased in liver of AZT-treated rats. Moreover, autophagy was dysregulated at two levels: (i) decreased induction signalling of this process as indicated by increases in autophagy inhibitors activity (AKT/mTOR), and absence of changes (Beclin-1, Atg5, Atg7) or decreases (AMPK/ULK1) in the expression/activity of pro-autophagy proteins; and (ii) reduced autophagosome degradation as indicated by decreases in the lysosome abundance (LAMP2 marker) and the transcription factor TFEB controlling lysosome biogenesis. This resulted in increased autophagosome abundance (LC3-II marker) and accumulation of the protein selectively degraded by autophagy p62, and the transcription factor Nrf2 in liver of AZT-treated rats. Nrf2 was activated as indicated by the up-regulation of antioxidant target genes Nqo1 and Hmox-1. In conclusion, rat liver with AZT-induced mtDNA depletion presented dysregulations in autophagosome formation and degradation balance, which results in accumulation of these structures in parenchymal liver cells, favouring hepatocarcinogenesis.


Asunto(s)
Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , Hígado/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/toxicidad , Zidovudina/toxicidad , Animales , Autofagosomas/patología , Línea Celular Tumoral , Hígado/patología , Masculino , Ratas Wistar
12.
J Hepatol ; 66(3): 581-588, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27884763

RESUMEN

BACKGROUND & AIMS: Acyl-CoA oxidase (ACOX2) is involved in the shortening of C27 cholesterol derivatives to generate C24 bile acids. Inborn errors affecting the rest of peroxisomal enzymes involved in bile acid biosynthesis have been described. Here we aimed at investigating the case of an adolescent boy with persistent hypertransaminasemia of unknown origin and suspected dysfunction in bile acid metabolism. METHODS: Serum and urine samples were taken from the patient, his sister and parents and underwent HPLC-MS/MS and HPLC-TOF analyses. Coding exons in genes of interest were amplified by high-fidelity PCR and sequenced. Wild-type or mutated (mutACOX2) variants were overexpressed in human hepatoblastoma HepG2 cells to determine ACOX2 enzymatic activity, expression and subcellular location. RESULTS: The patient's serum and urine showed negligible amounts of C24 bile acids, but augmented levels of C27 intermediates, mainly tauroconjugated trihydroxycholestanoic acid (THCA). Genetic analysis of enzymes potentially involved revealed a homozygous missense mutation (c.673C>T; R225W) in ACOX2. His only sister was also homozygous for this mutation and exhibited similar alterations in bile acid profiles. Both parents were heterozygous and presented normal C24 and C27 bile acid levels. Immunofluorescence studies showed similar protein size and peroxisomal localization for both normal and mutated variants. THCA biotransformation into cholic acid was enhanced in cells overexpressing ACOX2, but not in those overexpressing mutACOX2. Both cell types showed similar sensitivity to oxidative stress caused by C24 bile acids. In contrast, THCA-induced oxidative stress and cell death were reduced by overexpressing ACOX2, but not mutACOX2. CONCLUSION: ACOX2 deficiency, a condition characterized by accumulation of toxic C27 bile acid intermediates, is a novel cause of isolated persistent hypertransaminasemia. LAY SUMMARY: Elevation of serum transaminases is a biochemical sign of liver damage due to multiplicity of causes (viruses, toxins, autoimmunity, metabolic disorders). In rare cases the origin of this alteration remains unknown. We have identified by the first time in a young patient and his only sister a familiar genetic defect of an enzyme called ACOX2, which participates in the transformation of cholesterol into bile acids as a cause of increased serum transaminases in the absence of any other symptomatology. This treatable condition should be considered in the diagnosis of those patients where the cause of elevated transaminases remains obscure.


Asunto(s)
Ácidos y Sales Biliares/biosíntesis , Oxidorreductasas/deficiencia , Oxidorreductasas/genética , Errores Congénitos del Metabolismo Esteroideo/genética , Errores Congénitos del Metabolismo Esteroideo/metabolismo , Transaminasas/sangre , Adolescente , Secuencia de Bases , Femenino , Células Hep G2 , Homocigoto , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Oxidorreductasas/química , Linaje , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Hepatology ; 63(4): 1287-98, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26426865

RESUMEN

UNLABELLED: A challenge in obstetrics is to distinguish pathological symptoms from those associated with normal changes of pregnancy, typified by the need to differentiate whether gestational pruritus of the skin is an early symptom of intrahepatic cholestasis of pregnancy (ICP) or due to benign pruritus gravidarum. ICP is characterized by raised serum bile acids and complicated by spontaneous preterm labor and stillbirth. A biomarker for ICP would be invaluable for early diagnosis and treatment and to enable its differentiation from other maternal diseases. Three progesterone sulfate compounds, whose concentrations have not previously been studied, were newly synthesized and assayed in the serum of three groups of ICP patients and found to be significantly higher in ICP at 9-15 weeks of gestation and prior to symptom onset (group 1 cases/samples: ICP n = 35/80, uncomplicated pregnancy = 29/100), demonstrating that all three progesterone sulfates are prognostic for ICP. Concentrations of progesterone sulfates were associated with itch severity and, in combination with autotaxin, distinguished pregnant women with itch that would subsequently develop ICP from pruritus gravidarum (group 2: ICP n = 41, pruritus gravidarum n = 14). In a third group of first-trimester samples all progesterone sulfates were significantly elevated in serum from low-risk asymptomatic women who subsequently developed ICP (ICP/uncomplicated pregnancy n = 54/51). Finally, we show mechanistically that progesterone sulfates mediate itch by evoking a Tgr5-dependent scratch response in mice. CONCLUSION: Our discovery that sulfated progesterone metabolites are a prognostic indicator for ICP will help predict onset of ICP and distinguish it from benign pruritus gravidarum, enabling targeted obstetric care to a high-risk population. Delineation of a progesterone sulfate-TGR5 pruritus axis identifies a therapeutic target for itch management in ICP.


Asunto(s)
Ácidos y Sales Biliares/sangre , Colestasis Intrahepática/diagnóstico , Complicaciones del Embarazo/diagnóstico , Resultado del Embarazo , Preñez , Progesterona/metabolismo , Prurito/diagnóstico , Adulto , Animales , Conducta Animal , Estudios de Casos y Controles , Colestasis Intrahepática/sangre , Cromatografía Líquida de Alta Presión/métodos , Femenino , Humanos , Oportunidad Relativa , Valor Predictivo de las Pruebas , Embarazo , Complicaciones del Embarazo/sangre , Prurito/metabolismo , Curva ROC , Índice de Severidad de la Enfermedad , Espectrometría de Masas en Tándem/métodos , Reino Unido
14.
J Hepatol ; 63(4): 952-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26044126

RESUMEN

BACKGROUND & AIMS: Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive biliary cystogenesis. Current therapies show short-term and/or modest beneficial effects. Cystic cholangiocytes hyperproliferate as a consequence of diminished intracellular calcium levels ([Ca(2+)]i). Here, the therapeutic value of ursodeoxycholic acid (UDCA) was investigated. METHODS: Effect of UDCA was examined in vitro and in polycystic (PCK) rats. Hepatic cystogenesis and fibrosis, and the bile acid (BA) content were evaluated from the liver, bile, serum, and kidneys by HPLC-MS/MS. RESULTS: Chronic treatment of PCK rats with UDCA inhibits hepatic cystogenesis and fibrosis, and improves their motor behaviour. As compared to wild-type animals, PCK rats show increased BA concentration ([BA]) in liver, similar hepatic Cyp7a1 mRNA levels, and diminished [BA] in bile. Likewise, [BA] is increased in cystic fluid of PLD patients compared to their matched serum levels. In PCK rats, UDCA decreases the intrahepatic accumulation of cytotoxic BA, normalizes their diminished [BA] in bile, increases the BA secretion in bile and diminishes the increased [BA] in kidneys. In vitro, UDCA inhibits the hyperproliferation of polycystic human cholangiocytes via a PI3K/AKT/MEK/ERK1/2-dependent mechanism without affecting apoptosis. Finally, the presence of glycodeoxycholic acid promotes the proliferation of polycystic human cholangiocytes, which is inhibited by both UDCA and tauro-UDCA. CONCLUSIONS: UDCA was able to halt the liver disease of a rat model of PLD through inhibiting cystic cholangiocyte hyperproliferation and decreasing the levels of cytotoxic BA species in the liver, which suggests the use of UDCA as a potential therapeutic tool for PLD patients.


Asunto(s)
Apoptosis , Quistes/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Hígado/patología , Ácido Ursodesoxicólico/farmacología , Animales , Ácidos y Sales Biliares/metabolismo , Conductos Biliares/metabolismo , Conductos Biliares/patología , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colagogos y Coleréticos/farmacología , Quistes/metabolismo , Quistes/patología , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hepatopatías/metabolismo , Hepatopatías/patología , Ratas , Espectrometría de Masas en Tándem
15.
Hepatology ; 59(5): 1972-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24338587

RESUMEN

UNLABELLED: Sirtuin1 (SIRT1) regulates central metabolic functions such as lipogenesis, protein synthesis, gluconeogenesis, and bile acid (BA) homeostasis through deacetylation. Here we describe that SIRT1 tightly controls the regenerative response of the liver. We performed partial hepatectomy (PH) to transgenic mice that overexpress SIRT1 (SIRT). SIRT mice showed increased mortality, impaired hepatocyte proliferation, BA accumulation, and profuse liver injury after surgery. The damaging phenotype in SIRT mice correlated with impaired farnesoid X receptor (FXR) activity due to persistent deacetylation and lower protein expression that led to decreased FXR-target gene expression; small heterodimer partner (SHP), bile salt export pump (BSEP), and increased Cyp7A1. Next, we show that 24-norUrsodeoxycholic acid (NorUDCA) attenuates SIRT protein expression, increases the acetylation of FXR and neighboring histones, restores trimethylation of H3K4 and H3K9, and increases miR34a expression, thus reestablishing BA homeostasis. Consequently, NorUDCA restored liver regeneration in SIRT mice, which showed increased survival and hepatocyte proliferation. Furthermore, a leucine-enriched diet restored mammalian target of rapamycin (mTOR) activation, acetylation of FXR and histones, leading to an overall lower BA production through SHP-inhibition of Cyp7A1 and higher transport (BSEP) and detoxification (Sult2a1) leading to an improved liver regeneration. Finally, we found that human hepatocellular carcinoma (HCC) samples have increased presence of SIRT1, which correlated with the absence of FXR, suggesting its oncogenic potential. CONCLUSION: We define SIRT1 as a key regulator of the regenerative response in the liver through posttranscriptional modifications that regulate the activity of FXR, histones, and mTOR. Moreover, our data suggest that SIRT1 contributes to liver tumorigenesis through dysregulation of BA homeostasis by persistent FXR deacetylation.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Regeneración Hepática , Receptores Citoplasmáticos y Nucleares/fisiología , Transducción de Señal/fisiología , Sirtuina 1/fisiología , Serina-Treonina Quinasas TOR/fisiología , Acetilación , Animales , Ácidos y Sales Biliares/toxicidad , Proliferación Celular , Homeostasis , Neoplasias Hepáticas/etiología , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Br J Clin Pharmacol ; 79(2): 316-29, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25099365

RESUMEN

AIM: Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and elevated bile acid concentrations in maternal serum. This is accompanied by an enhanced risk of intra-uterine and perinatal complications. High concentrations of sulphated progesterone metabolites (PMS) have been suggested to be involved in the multifactorial aetiopathogenesis of ICP. The aim of this study was to investigate further the mechanism accounting for the beneficial effect of oral administration of ursodeoxycholic acid (UDCA), which is the standard treatment, regarding bile acid and PMS homeostasis in the mother-placenta-foetus trio. METHOD: Using HPLC-MS/MS bile acids and PMS were determined in maternal and foetal serum and placenta. The expression of ABC proteins in placenta was determined by real time quantitative PCR (RT-QPCR) and immunofluorescence. RESULTS: In ICP, markedly increased concentrations of bile acids (tauroconjugates > glycoconjugates >> unconjugated), progesterone and PMS in placenta and maternal serum were accompanied by enhanced concentrations in foetal serum of bile acids, but not of PMS. UDCA treatment reduced bile acid accumulation in the mother-placenta-foetus trio, but had no significant effect on progesterone and PMS concentrations. ABCG2 mRNA abundance was increased in placentas from ICP patients vs. controls and remained stable following UDCA treatment, despite an apparent further increase in ABCG2. CONCLUSION: UDCA administration partially reduces ICP-induced bile acid accumulation in mothers and foetuses despite the lack of effect on concentrations of progesterone and PMS in maternal serum. Up-regulation of placental ABCG2 may play an important role in protecting the foetus from high concentrations of bile acids and PMS during ICP.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colestasis Intrahepática/tratamiento farmacológico , Complicaciones del Embarazo/tratamiento farmacológico , Progesterona/metabolismo , Ácido Ursodesoxicólico/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Adolescente , Adulto , Colestasis Intrahepática/fisiopatología , Cromatografía Líquida de Alta Presión/métodos , Estudios de Cohortes , Femenino , Feto/metabolismo , Humanos , Proteínas de Neoplasias/genética , Placenta/metabolismo , Embarazo , Complicaciones del Embarazo/fisiopatología , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem/métodos , Regulación hacia Arriba , Ácido Ursodesoxicólico/administración & dosificación , Adulto Joven
17.
Eur J Nutr ; 53(2): 401-12, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23708151

RESUMEN

PURPOSE: Owing to its ability to inactivate harmful radicals, vitamin C plays a key role in antioxidant defense. The bioavailability of this vitamin depends upon the nutritional intake and its uptake by cells, mainly through the sodium-dependent transporters SVCT1/Svct1 and SVCT2/Svct2 (human/rat). Here, we investigated the effect of liver metabolic/oxidative stress on the expression of these transporters in extrahepatic tissues. METHODS AND RESULTS: In Zucker rats, used here as a model of liver steatosis, Svct1-2 mRNA levels were similar in obese and lean animals, except for lung tissue, where Svct2 was up-regulated. Diabetes mellitus, developed by streptozotocin administration, was accompanied by a down-regulation of Svct1 in liver and kidney, together with a down-regulation of Svct2 in kidney and brain. Complete obstructive cholestasis due to bile duct ligation for 1 week induced a significant down-regulation of both Svct1 and Svct2 in ileum, whereas Svct2 was up-regulated in liver, and no significant changes in the expression of either transporter were found in kidney, brain or lung. In rat hepatoma Can-10 cells, bile acids, but not the FXR agonist GW4064, induced an up-regulation of Svct1 and Svct2. In human hepatoma Alexander cells transfected with FXR/RXRα/OATP1B1, neither GW4064 nor unconjugated or glycine-/taurine-conjugated major bile acids were able to up-regulate either SVCT1 or SVCT2. CONCLUSIONS: Pathological circumstances characterized by the presence of metabolic/oxidative stress in the liver induce different responses in the expression of ascorbic acid transporters in intrahepatic and extrahepatic tissues, which may affect the overall bioavailability and cellular uptake of this vitamin.


Asunto(s)
Expresión Génica , Hígado/metabolismo , Estrés Oxidativo/fisiología , Transportadores de Sodio Acoplados a la Vitamina C/genética , Estrés Fisiológico/fisiología , Animales , Ácido Ascórbico/farmacocinética , Ácido Ascórbico/farmacología , Ácidos y Sales Biliares/farmacología , Disponibilidad Biológica , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Colestasis/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hígado Graso/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Riñón/química , Hígado/química , Neoplasias Hepáticas/metabolismo , Masculino , Obesidad/complicaciones , Oxidación-Reducción , ARN Mensajero/análisis , Ratas , Ratas Zucker
18.
Acta Pharmacol Sin ; 35(1): 1-10, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24317012

RESUMEN

A major difficulty in the treatment of cancers is the poor response of many tumors to pharmacological regimens. This situation can be accounted for by the existence of a variety of complex mechanisms of chemoresistance (MOCs), leading to reduced intracellular concentrations of active agents, changes in the molecular targets of the drugs, enhanced repair of drug-induced modifications in macromolecules, stimulation of anti-apoptotic mechanisms, and inhibition of pro-apoptotic mechanisms. The present review focuses on alterations in the expression and appearance of the genetic variants that affect the genes involved in reducing the amount of active agents inside tumor cells. These alterations can occur through two mechanisms: either by lowering uptake or enhancing efflux (so-called MOC-1a and MOC-1b, respectively), or by decreasing the activation of prodrugs or enhancing inactivation of active agents through their biotransformation (MOC-2). The development of chemosensitizers that are useful in implementing the pharmacological manipulation of these processes constitutes a challenge to modern pharmacology. Nevertheless, the important physiological roles of the most relevant genes involved in MOC-1a, MOC-1b, and MOC-2 make it difficult to prevent the side effects of chemosensitizers. A more attainable goal in this area of pharmacological enquiry is the identification of proteomic profiles that will permit oncologists to accurately predict a lack of response to a given regimen, which would be useful for adapting treatment to the personal situation of each patient.


Asunto(s)
Antineoplásicos/metabolismo , Resistencia a Antineoplásicos/fisiología , Líquido Intracelular/metabolismo , Neoplasias/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Líquido Intracelular/efectos de los fármacos , Neoplasias/tratamiento farmacológico
19.
Gut ; 62(6): 899-910, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23292666

RESUMEN

OBJECTIVE: Cholestasis is associated with increased liver injury and morbidity after partial hepatectomy (PH), yet bile acids (BAs) are emerging as important mediators of liver regeneration. Fibroblast growth factor 15 (Fgf15, human FGF19) is a BA-induced ileum-derived enterokine that governs BA metabolism. We evaluated the relevance of Fgf15 in the preservation of BA homeostasis after PH and its potential role in the regenerative process. DESIGN: Liver regeneration after PH was studied in Fgf15 (-/-) and Fgf15 (+/+) mice. The effects of the BA sequestrant cholestyramine and adenovirally delivered Fgf15 were examined in this model. The role of Fgf15 in BA-induced liver growth was tested in Fgf15 (-/-) mice upon cholic acid (CA) feeding. The direct mitogenic effect of Fgf15 was evaluated in cultured mouse hepatocytes and cholangiocytes. RESULTS: Fgf15 (-/-) mice showed marked liver injury and mortality after PH accompanied by persistently elevated intrahepatic BA levels. Cholestyramine feeding and adenovirally delivered Fgf15 reduced BA levels and significantly prevented this lethal outcome. Fgf15 also reduced mortality after extensive hepatectomy in Fgf15(+/+) animals. Liver growth elicited by CA feeding was significantly diminished in Fgf15 (-/-) mice. Proliferation of hepatocytes and cholangiocytes was also noticeably reduced in CA-fed Fgf15 (-/-) mice. Fgf15 induced intracellular signalling and proliferation of cultured hepatocytes and cholangiocytes. CONCLUSIONS: Fgf15 is necessary to maintain BA homeostasis and prevent liver injury during liver regeneration. Moreover, Fgf15 is an essential mediator of the liver growth-promoting effects of BA. Preoperative administration of this enterokine to patients undergoing liver resection might be useful to reduce damage and foster regeneration.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Hepatectomía , Fallo Hepático/prevención & control , Regeneración Hepática/fisiología , Complicaciones Posoperatorias , Animales , Homeostasis/fisiología , Fallo Hepático/metabolismo , Fallo Hepático/mortalidad , Ratones , Ratones Endogámicos C57BL
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166926, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37956602

RESUMEN

BACKGROUND: In intrahepatic cholestasis of pregnancy (ICP), there are elevated maternal serum levels of total bile acids, progesterone, and some sulfated metabolites, such as allopregnanolone sulfate, which inhibits canalicular function. AIM: To investigate the relationship between cholestasis and the expression of crucial enzymes involved in progesterone metabolism in the liver and placenta. METHODS: Obstructive cholestasis was induced by bile duct ligation (BDL). RT-qPCR (mRNA) and western blot (protein) were used to determine expression levels. Srd5a1 and Akr1c2 enzymatic activities were assayed by substrate disappearance (progesterone and 5α-dihydroprogesterone, respectively), measured by HPLC-MS/MS. RESULTS: BDL induced decreased Srd5a1 and Akr1c2 expression and activity in rat liver, whereas both enzymes were up-regulated in rat placenta. Regarding sulfotransferases, Sult2b1 was also moderately up-regulated in the liver. In placenta from ICP patients, SRD5A1 and AKR1C2 expression was elevated, whereas both genes were down-regulated in liver biopsies collected from patients with several liver diseases accompanied by cholestasis. SRD5A1 and AKR1C2 expression was not affected by incubating human hepatoma HepG2 cells with FXR agonists (chenodeoxycholic acid and GW4064). Knocking-out Fxr in mice did not reduce Srd5a1 and Akr1c14 expression, which was similarly down-regulated by BDL. CONCLUSION: SRD5A1 and AKR1C2 expression was markedly altered by cholestasis. This was enhanced in the placenta but decreased in the liver, which is not mediated by FXR. These results suggest that the excess of progesterone metabolites in the serum of ICP patients can involve both enhanced placental production and decreased hepatic clearance. The latter may also occur in other cholestatic conditions.


Asunto(s)
Colestasis , Placenta , Embarazo , Humanos , Femenino , Ratones , Ratas , Animales , Placenta/metabolismo , Progesterona/metabolismo , Espectrometría de Masas en Tándem , Hígado/metabolismo , Colestasis/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda