Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Biol Chem ; 299(6): 104791, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37156396

RESUMEN

Radical S-adenosyl-l-methionine (SAM) enzymes are ubiquitous in nature and carry out a broad variety of difficult chemical transformations initiated by hydrogen atom abstraction. Although numerous radical SAM (RS) enzymes have been structurally characterized, many prove recalcitrant to crystallization needed for atomic-level structure determination using X-ray crystallography, and even those that have been crystallized for an initial study can be difficult to recrystallize for further structural work. We present here a method for computationally engineering previously observed crystallographic contacts and employ it to obtain more reproducible crystallization of the RS enzyme pyruvate formate-lyase activating enzyme (PFL-AE). We show that the computationally engineered variant binds a typical RS [4Fe-4S]2+/+ cluster that binds SAM, with electron paramagnetic resonance properties indistinguishable from the native PFL-AE. The variant also retains the typical PFL-AE catalytic activity, as evidenced by the characteristic glycyl radical electron paramagnetic resonance signal observed upon incubation of the PFL-AE variant with reducing agent, SAM, and PFL. The PFL-AE variant was also crystallized in the [4Fe-4S]2+ state with SAM bound, providing a new high-resolution structure of the SAM complex in the absence of substrate. Finally, by incubating such a crystal in a solution of sodium dithionite, the reductive cleavage of SAM is triggered, providing us with a structure in which the SAM cleavage products 5'-deoxyadenosine and methionine are bound in the active site. We propose that the methods described herein may be useful in the structural characterization of other difficult-to-resolve proteins.


Asunto(s)
Acetiltransferasas , S-Adenosilmetionina , Acetiltransferasas/química , Acetiltransferasas/metabolismo , Dominio Catalítico , Cristalización , Ditionita , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Metionina/metabolismo , Oxidación-Reducción , S-Adenosilmetionina/metabolismo
2.
Appl Environ Microbiol ; 90(6): e0024424, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38780510

RESUMEN

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase, and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, demonstrate complex formation between TclI, TclJ, and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core. IMPORTANCE: Thiopeptides are a family of antimicrobial peptides characterized for having sulfur-containing heterocycles and for being highly post-translationally modified. Numerous thiopeptides have been identified; almost all of which inhibit protein synthesis in gram-positive bacteria. These intrinsic antimicrobial properties make thiopeptides promising candidates for the development of new antibiotics. The thiopeptide micrococcin is synthesized by the ribosome and undergoes several post-translational modifications to acquire its bioactivity. In this study, we identify key interactions within the enzymatic complex that carries out cysteine to thiazole conversion in the biosynthesis of micrococcin.


Asunto(s)
Bacteriocinas , Cisteína , Tiazoles , Tiazoles/metabolismo , Cisteína/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/química , Bacteriocinas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Procesamiento Proteico-Postraduccional , Escherichia coli/genética , Escherichia coli/metabolismo
3.
Nature ; 545(7653): 234-237, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28467818

RESUMEN

Wnt proteins modulate cell proliferation and differentiation and the self-renewal of stem cells by inducing ß-catenin-dependent signalling through the Wnt receptor frizzled (FZD) and the co-receptors LRP5 and LRP6 to regulate cell fate decisions and the growth and repair of several tissues. The 19 mammalian Wnt proteins are cross-reactive with the 10 FZD receptors, and this has complicated the attribution of distinct biological functions to specific FZD and Wnt subtype interactions. Furthermore, Wnt proteins are modified post-translationally by palmitoylation, which is essential for their secretion, function and interaction with FZD receptors. As a result of their acylation, Wnt proteins are very hydrophobic and require detergents for purification, which presents major obstacles to the preparation and application of recombinant Wnt proteins. This hydrophobicity has hindered the determination of the molecular mechanisms of Wnt signalling activation and the functional importance of FZD subtypes, and the use of Wnt proteins as therapeutic agents. Here we develop surrogate Wnt agonists, water-soluble FZD-LRP5/LRP6 heterodimerizers, with FZD5/FZD8-specific and broadly FZD-reactive binding domains. Similar to WNT3A, these Wnt agonists elicit a characteristic ß-catenin signalling response in a FZD-selective fashion, enhance the osteogenic lineage commitment of primary mouse and human mesenchymal stem cells, and support the growth of a broad range of primary human organoid cultures. In addition, the surrogates can be systemically expressed and exhibit Wnt activity in vivo in the mouse liver, regulating metabolic liver zonation and promoting hepatocyte proliferation, resulting in hepatomegaly. These surrogates demonstrate that canonical Wnt signalling can be activated by bi-specific ligands that induce receptor heterodimerization. Furthermore, these easily produced, non-lipidated Wnt surrogate agonists facilitate functional studies of Wnt signalling and the exploration of Wnt agonists for translational applications in regenerative medicine.


Asunto(s)
Transducción de Señal , Proteínas Wnt/agonistas , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Receptores Frizzled/metabolismo , Células HEK293 , Hepatocitos/citología , Hepatomegalia/metabolismo , Hepatomegalia/patología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Intestinos/citología , Ligandos , Hígado/metabolismo , Hígado/patología , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Modelos Moleculares , Organoides/citología , Organoides/metabolismo , Multimerización de Proteína , Solubilidad , Técnicas de Cultivo de Tejidos
4.
J Proteome Res ; 21(12): 2920-2935, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36356215

RESUMEN

Many of the diseases that plague society today are driven by a loss of protein quality. One method to quantify protein quality is to measure the protein folding stability (PFS). Here, we present a novel mass spectrometry (MS)-based approach for PFS measurement, iodination protein stability assay (IPSA). IPSA quantifies the PFS by tracking the surface-accessibility differences of tyrosine, histidine, methionine, and cysteine under denaturing conditions. Relative to current methods, IPSA increases protein coverage and granularity to track the PFS changes of a protein along its sequence. To our knowledge, this study is the first time the PFS of human serum proteins has been measured in the context of the blood serum (in situ). We show that IPSA can quantify the PFS differences between different transferrin iron-binding states in near in vivo conditions. We also show that the direction of the denaturation curve reflects the in vivo surface accessibility of the amino acid residue and reproducibly reports a residue-specific PFS. Along with IPSA, we introduce an analysis tool Chalf that provides a simple workflow to calculate the residue-specific PFS. The introduction of IPSA increases the potential to use protein structural stability as a structural quality metric in understanding the etiology and progression of human disease. Data is openly available at Chorusproject.org (project ID 1771).


Asunto(s)
Halogenación , Pliegue de Proteína , Humanos , Estabilidad Proteica , Transferrina/metabolismo , Espectrometría de Masas
5.
J Biol Chem ; 294(44): 16385-16399, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31530639

RESUMEN

Bardet-Biedl syndrome (BBS) is a genetic disorder characterized by malfunctions in primary cilia resulting from mutations that disrupt the function of the BBSome, an 8-subunit complex that plays an important role in protein transport in primary cilia. To better understand the molecular basis of BBS, here we used an integrative structural modeling approach consisting of EM and chemical cross-linking coupled with MS analyses, to analyze the structure of a BBSome 2-7-9 subcomplex consisting of three homologous BBS proteins, BBS2, BBS7, and BBS9. The resulting molecular model revealed an overall structure that resembles a flattened triangle. We found that within this structure, BBS2 and BBS7 form a tight dimer through a coiled-coil interaction and that BBS9 associates with the dimer via an interaction with the α-helical domain of BBS2. Interestingly, a BBS-associated mutation of BBS2 (R632P) is located in its α-helical domain at the interface between BBS2 and BBS9, and binding experiments indicated that this mutation disrupts the BBS2-BBS9 interaction. This finding suggests that BBSome assembly is disrupted by the R632P substitution, providing molecular insights that may explain the etiology of BBS in individuals harboring this mutation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas/metabolismo , Síndrome de Bardet-Biedl/metabolismo , Cilios/metabolismo , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Microscopía Electrónica/métodos , Modelos Moleculares , Mutación
6.
Proc Natl Acad Sci U S A ; 114(38): 10125-10130, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28864533

RESUMEN

The polycomb repressive complex 2 (PRC2) histone methyltransferase plays a central role in epigenetic regulation in development and in cancer, and hence to interrogate its role in a specific developmental transition, methods are needed for disrupting function of the complex with high temporal and spatial precision. The catalytic and substrate recognition functions of PRC2 are coupled by binding of the N-terminal helix of the Ezh2 methylase to an extended groove on the EED trimethyl lysine binding subunit. Disrupting PRC2 function can in principle be achieved by blocking this single interaction, but there are few approaches for blocking specific protein-protein interactions in living cells and organisms. Here, we describe the computational design of proteins that bind to the EZH2 interaction site on EED with subnanomolar affinity in vitro and form tight and specific complexes with EED in living cells. Induction of the EED binding proteins abolishes H3K27 methylation in human embryonic stem cells (hESCs) and at all but the earliest stage blocks self-renewal, pinpointing the first critical repressive H3K27me3 marks in development.


Asunto(s)
Simulación por Computador , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Histonas/química , Células Madre Embrionarias Humanas/citología , Humanos , Metilación , Complejo Represivo Polycomb 2/química
7.
Cell Mol Biol Lett ; 18(1): 1-10, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23076992

RESUMEN

Cell-cell and cell-substrate adhesions are sites of dramatic actin rearrangements and where actin-membrane connections are tightly regulated. Zyxin-VASP complexes localize to sites of cell-cell and cell-substrate adhesion and function to regulate actin dynamics and actin-membrane connections at these sites. To accomplish these functions, zyxin recruits VASP to cellular sites via proline-rich binding sites near zyxin's amino terminus. While the prevailing thought has been that zyxin simply acts as a scaffold protein for VASP binding, the identification of a LIM domain-VASP interaction could complicate this view. Here we assess how zyxin-VASP binding through both the proline rich motifs and the LIM domains alters specific VASP functions. We find that neither individual interaction alters VASP's actin regulatory activities. In contrast, however, we find that full-length zyxin dramatically reduces VASP-mediated actin bundling and actin assembly. Taken together, these results suggest a model where zyxin-VASP complexes occur in complex organizations with suppressed actin regulatory activity.


Asunto(s)
Actinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Zixina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/genética , Sitios de Unión , Adhesión Celular , Moléculas de Adhesión Celular/química , Comunicación Celular , Células Eucariotas/química , Células Eucariotas/metabolismo , Humanos , Proteínas de Microfilamentos/química , Fosfoproteínas/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal , Zixina/química
8.
Acta Crystallogr D Struct Biol ; 79(Pt 10): 925-943, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747038

RESUMEN

TELSAM-fusion crystallization has the potential to become a revolutionary tool for the facile crystallization of proteins. TELSAM fusion can increase the crystallization rate and enable crystallization at low protein concentrations, in some cases with minimal crystal contacts [Nawarathnage et al. (2022), Open Biol. 12, 210271]. Here, requirements for the linker composition between 1TEL and a fused CMG2 vWa domain were investigated. Ala-Ala, Ala-Val, Thr-Val and Thr-Thr linkers were evaluated, comparing metrics for crystallization propensity and crystal order. The effect on crystallization of removing or retaining the purification tag was then tested. It was discovered that increasing the linker bulk and retaining the 10×His purification tag improved the diffraction resolution, likely by decreasing the number of possible vWa-domain orientations in the crystal. Additionally, it was discovered that some vWa-domain binding modes are correlated with scrambling of the 1TEL polymer orientation in crystals and an effective mitigation strategy for this pathology is presented.


Asunto(s)
Proteínas , Cristalización
9.
bioRxiv ; 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37293010

RESUMEN

TELSAM crystallization promises to become a revolutionary tool for the facile crystallization of proteins. TELSAM can increase the rate of crystallization and form crystals at low protein concentrations without direct contact between TELSAM polymers and, in some cases, with very minimal crystal contacts overall (Nawarathnage et al ., 2022). To further understand and characterize TELSAM-mediated crystallization, we sought to understand the requirements for the composition of the linker between TELSAM and the fused target protein. We evaluated four different linkers Ala-Ala, Ala-Val, Thr-Val, and Thr-Thr, between 1TEL and the human CMG2 vWa domain. We compared the number of successful crystallization conditions, the number of crystals, the average and best diffraction resolution, and the refinement parameters for the above constructs. We also tested the effect of the fusion protein SUMO on crystallization. We discovered that rigidification of the linker improved diffraction resolution, likely by decreasing the number of possible orientations of the vWa domains in the crystal, and that omitting the SUMO domain from the construct also improved the diffraction resolution. Synopsis: We demonstrate that the TELSAM protein crystallization chaperone can enable facile protein crystallization and high-resolution structure determination. We provide evidence to support the use of short but flexible linkers between TELSAM and the protein of interest and to support the avoidance of cleavable purification tags in TELSAM-fusion constructs.

10.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398013

RESUMEN

Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1-UBA domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. Sequence analysis suggests an unusual architecture for the TNK1 UBA domain, but an experimentally-validated molecular structure is undetermined. To gain insight into TNK1 regulation, we fused the UBA domain to the 1TEL crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. A 1TEL search model enabled solution of the X-ray phases. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and to crystallize at protein concentrations as low as 0.1 mg/mL. Our studies support a mechanism of TELSAM fusion crystallization and show that TELSAM fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.

11.
Structure ; 31(12): 1589-1603.e6, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37776857

RESUMEN

Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1 ubiquitin-associated (UBA) domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. No experimentally determined molecular structure of this unusual UBA domain is available. We fused the UBA domain to the 1TEL variant of the translocation ETS leukemia protein sterile alpha motif (TELSAM) crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and crystallize at protein concentrations as low as 0.2 mg/mL. Our studies support a mechanism of 1TEL fusion crystallization and show that 1TEL fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.


Asunto(s)
Chaperonas Moleculares , Poliubiquitina , Humanos , Poliubiquitina/química , Unión Proteica , Cristalización , Estructura Terciaria de Proteína , Dominios Proteicos , Chaperonas Moleculares/metabolismo , Proteínas Fetales/metabolismo , Proteínas Tirosina Quinasas/metabolismo
12.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961320

RESUMEN

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, we demonstrate complex formation between TclI, TclJ and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core.

13.
J Inorg Biochem ; 227: 111662, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34847521

RESUMEN

Glycerol dehydratase activating enzyme (GD-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential amino acid backbone radical onto glycerol dehydratase in bacteria under anaerobic conditions. Although GD-AE is closely homologous to other radical SAM activases that have been shown to cleave the S-C(5') bond of SAM to produce 5'-deoxyadenosine (5'-dAdoH) and methionine, GD-AE from Clostridium butyricum has been reported to instead cleave the S-C(γ) bond of SAM to yield 5'-deoxy-5'-(methylthio)adenosine (MTA). Here we re-investigate the SAM cleavage reaction catalyzed by GD-AE and show that it produces the widely observed 5'-dAdoH, and not the less conventional product MTA.


Asunto(s)
Proteínas Bacterianas/química , Clostridium butyricum/enzimología , Desoxiadenosinas/química , Hidroliasas/química , S-Adenosilmetionina/química , Vitamina B 12/química
14.
Open Biol ; 12(3): 210271, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35232248

RESUMEN

While conducting pilot studies into the usefulness of fusion to TELSAM polymers as a potential protein crystallization strategy, we observed novel properties in crystals of two TELSAM-target protein fusions, as follows. (i) A TELSAM-target protein fusion can crystallize more rapidly and with greater propensity than the same target protein alone. (ii) TELSAM-target protein fusions can be crystallized at low protein concentrations. This unprecedented observation suggests a route to crystallize proteins that can only be produced in microgram amounts. (iii) The TELSAM polymers themselves need not directly contact one another in the crystal lattice in order to form well-diffracting crystals. This novel observation is important because it suggests that TELSAM may be able to crystallize target proteins too large to allow direct inter-polymer contacts. (iv) Flexible TELSAM-target protein linkers can allow target proteins to find productive binding modes against the TELSAM polymer. (v) TELSAM polymers can adjust their helical rise to allow fused target proteins to make productive crystal contacts. (vi). Fusion to TELSAM polymers can stabilize weak inter-target protein crystal contacts. We report features of these TELSAM-target protein crystal structures and outline future work needed to validate TELSAM as a crystallization chaperone and determine best practices for its use.


Asunto(s)
Chaperonas Moleculares , Polímeros , Cristalización , Cristalografía por Rayos X , Chaperonas Moleculares/química , Polímeros/química
15.
Biochem Biophys Res Commun ; 378(3): 625-8, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19061869

RESUMEN

Zyxin is an adhesion protein that regulates actin assembly by binding to VASP family members through N-terminal proline-rich motifs. Evidence suggests that zyxin's C-terminal LIM domains function as a negative regulator of zyxin-VASP complexes. Zyxin LIM domains access to binding partners is negatively regulated by an unknown mechanism. One possibility is that zyxin LIM domains mediate a head-tail interaction, blocking interactions with other proteins. Such a mechanism might prevent both zyxin-VASP complexes activity and LIM domain access. In this report, the effect of LIM domains on zyxin-VASP complex assembly is defined. We find that zyxin LIM domains associate with zyxin's VASP binding sites, preventing zyxin from binding to PKA-phosphorylated VASP. Unphosphorylated VASP overcomes the head-tail interaction, a result of a direct interaction with the LIM domain region. Zyxin, like a growing number of actin regulators, is controlled by intramolecular interactions.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Glicoproteínas/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Moléculas de Adhesión Celular/química , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Proteínas de Microfilamentos/química , Fosfoproteínas/química , Estructura Terciaria de Proteína , Zixina
16.
Cell Chem Biol ; 23(10): 1173-1174, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768865

RESUMEN

The human gut microbiome is the source of not only microbial diversity, but also of interesting chemical reactions and enzymology. An excellent example of this is CutC, an enzyme that makes trimethylamine (TMA). In this issue of Cell Chemical Biology, Bodea et al. (2016) show how CutC uses a glycyl radical to perform C-N bond cleavage needed for TMA production.


Asunto(s)
Microbioma Gastrointestinal , Liasas , Colina , Humanos , Metilaminas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda