Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Bioresour Technol ; 377: 128900, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36933573

RESUMEN

The present study investigated the effect of a conductive biofilm supporter on continuous production of biohydrogen in a dynamic membrane bioreactor (DMBR). Two lab-scale DMBRs were operated: one with a nonconductive polyester mesh (DMBR I) and the other with a conductive stainless-steel mesh (DMBR II). The highest average hydrogen productivity and the yield were 16.8% greater in DMBR II than in DMBR I, with values of 51.64 ± 0.66 L/L-d and 2.01 ± 0.03 mol H2/mol hexoseconsumed, respectively. The improved hydrogen production was concurrent with a higher NADH/NAD+ ratio and a lower ORP (Oxidation-reduction potential). Metabolic flux analysis implied that the conductive supporter promoted H2-producing acetogenesis and repressed competitive NADH-consuming pathways, such as homoacetogenesis and lactate production. Microbial community analysis revealed that electroactive Clostridium sp. were the dominant H2 producers in DMBR II. Conclusively, conductive meshes may be useful as biofilm supporters of dynamic membranes during H2 production for selectively enhancing H2-producing pathways.


Asunto(s)
Hidrógeno , NAD , Fermentación , NAD/metabolismo , Hidrógeno/metabolismo , Reactores Biológicos , Biopelículas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda